Spelling suggestions: "subject:"finitevolume"" "subject:"finitevolumes""
181 |
Observational and modelling approaches to study urban climate : application on Pakistan / Méthodes d'observation et de modélisation pour étudier le climat urbain : application sur le PakistanSajjad, Sajjad Hussain 16 April 2013 (has links)
L'objectif majeur de ce travail est d'étudier le climat urbain, principalement en mettant l'accent sur les tendances de la température. Il s’agit principalement de l’augmentation des températures grâce à des techniques d'observation et de modélisation. A cet effet, des données températures de 1950 à 2004 ont étudiées sur plusieurs stations de mesure au Pakistan. Les données de températures annuelles et saisonnières moyennes quotidiennes minimales (Tmin) et maximales (Tmax) de 37 observatoires météorologiques du Pakistan (17 urbain, 7 petite ville et 13 rurale) pour la période 1950-2004 ont d'abord été homogénéisées, puis analysées. Les résultats montrent qu’après les années 1980, Tmin et Tmax tendent à augmenter plus vite que la période d'avant 1980 sur les zones urbaines. Au cours de la période 1980-2004, l'augmentation annuelle de Tmin sur les stations urbaines est observée plus élevée que sur les stations des petites villes et les stations rurales. Pour comprendre l’effet de la taille de la ville, le changement du l’utilisation des sols et la hauteur du bâtiment sur l'évolution des températures minimales et maximales des zones urbaines a été étudié en utilisant le model FVM (Finite Volume Model) et des simulations ont faites pour trois jours à partir de 00:00 (GMT) le 19e jour de chaque mois et se terminant à 00:00 (GMT) le 22e jour de chaque mois. Pour chaque mois, 48 combinaisons possibles de scénarios de simulation sont exécutés (4*4*3) et au total, 576 simulations (48*12) sont exécutés pendant un an. Les résultats centre montrent que Tmin et Tmax augmente lorsque fraction urbaine u, taille de la ville r et hauteur du bâtiment h augmente. Mais on remarque que Tmax augmente plus que le Tmin quand u augmente, Tmin augmente plus que Tmax lorsque r augmente et Tmin augmente plus que Tmax lorsque h augmente. Parmi tous les facteurs urbains (fraction urbaine u, taille de la ville r et hauteur du bâtiment h), la taille de la ville est le facteur majeur qui contribue principalement à augmenter la température minimale plus que température maximale dans les zones urbaines. / The objective of this work is to study the urban climate, mainly by focusing on urban temperature trends. The specific focus is to understand the reasons of increase in minimum temperature through observational and modelling techniques. For this purpose, the temperatures data from 1950 to 2004 measured on several meteorological stations of Pakistan is studied and analyzed. Daily averaged annual and seasonal minimum (Tmin) and maximum (Tmax) temperature data of 37 meteorological observatories of Pakistan (17 urban, 7 town and 13 rural) from 1950 to 2004 is first homogenized and then analyzed. The results show that after 1980s Tmin and Tmax increase faster than the period before 1980s at urban areas. During 1980–2004, the increase in Tmin at major urban stations is observed higher than the smaller towns and rural stations. To understand, the effect of the size of the city, changing land use and the building height on the evolution of minimum and maximum temperatures in urban areas has been studied by using the FVM (Finite Volume Model) model and the simulations are run for three days starting at 00:00 (GMT) on 19th day of each month and ending at 00:00 (GMT) on 22nd day of each month. For each month, 48 possible combinations of simulation scenarios are run (4*4*3) and in total, 576 simulations (48*12) are run for a year. The main results show that Tmin and Tmax increase when urban fraction u, city size r and building height h increase. But it is noticed that Tmax increases more than the Tmin when u increases, Tmin increases more than the Tmax when r increases and Tmin increases more than the Tmax when h increases. Among all urban factors (urban fraction u, city size r and building’s height h), city size is the major factor that mainly contributes to increase the minimum temperature more than the maximum temperature in urban areas.
|
182 |
Development of numerical tools for hemodynamics and fluid structure interactionsMa, Jieyan January 2014 (has links)
The aim of this study is to create CFD tools and models capable of simulating pulsatile blood flow in abdominal aortic aneurysm (AAA) and stent graft. It helps to increase the current physiological understanding of rupture risk of AAA and stent graft fixation or migration. Firstly, in order to build a general solver for the AAA modeling with reasonable accuracy, a third/fourth order modified OCI scheme is originally developed for general numerical simulation. The modified OCI scheme has a wider cell Reynolds number limitation. This high order scheme performs well with general rectangular mesh for incompressible fluid. Second, a velocity based finite volume method is originally developed to calculate the stress field for solid in order to capture the transient changes of the blood vessel since the artery is a rubber like material. All one, two and three dimensional classical cases for solid are tested and good results are obtained. The velocity based finite volume method show good potential to calculate the stress field for solid and easy to blend with the finite volume fluid solver. It has been recognized that fluid structure interaction (FSI) is very crucial in biomechanics. In this regard, the velocity based finite volume method is then further developed for FSI application. A well known one dimensional piston problem is studied to understand the feasibility of the fluid structure coupling. The numerical prediction matches the analytical solution very well. The velocity based method introduces less numerical damping compared with a stagger method and a monolithic method. Finally, the work focuses on practical pulsatile boundary conditions, non-Newtonian blood viscous properties and bifurcating geometry, and provides an overview of the hemodynamic within the AAA model. A modified Womersley inlet and imbalance pressure outlet boundary conditions are originally used in this study. The Womersley inlet boundary represents better approximation for pulsatile flow compared with the parabolic inlet condition. Numerical results are presented providing comparison between different boundary conditions using different viscous models in both 2D and 3D aneurysms. Good agreement between the numerical predictions and the experimental data is achieved for 2D case. 3D stent models with different bifurcation angles are also tested. The Womersley inlet boundary condition improves the existing inlet conditions significantly and it can reduce the Aneurysm neck computation domain. The influence of the non-Newtonian model to the wall shear stress (WSS) and strain-rate is also studied. The non-Newtonian model tends to produce higher WSS at both proximal and distal end of the aneurysm as compared with the Newtonian model (both 2D and 3D cases). The computed strain-rate distribution at the centre of the aneurysm is different between these two models. The influence of imbalance outlet pressure at the iliac arteries to the blood flow is originally investigated. The imbalance outlet pressure boundary conditions affect the computed wall shear stress significantly near the bifurcation point. All the pulsatile Womersley inlet, non-Newtonian viscosity properties and the imbalance pressure outlet need to be considered in blood flow simulation of AAA.
|
183 |
Simulação numérica de roll waves em canais fechados / Roll waves numerical simulation in closed channelsGaspari, Eduardo Ferreira 27 February 2013 (has links)
Orientador: Antonio Carlos Bannwart / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica e Instituto de Geociências / Made available in DSpace on 2018-08-22T09:34:42Z (GMT). No. of bitstreams: 1
Gaspari_EduardoFerreira_D.pdf: 3211545 bytes, checksum: 80820e359cf9df0a39b228d34978524f (MD5)
Previous issue date: 2013 / Resumo: Utilizando um método numérico especializado em problemas hiperbólicos chamado Riemann Solver, é feito um estudo para avaliar o processo de evolução de roll waves em canais fechados. Todo o estudo se baseia em fenômenos de propagação de ondas hiperbólicas do tipo ondas de gravidade. Foi utilizado um modelo unidimensional para representar a dinâmica das roll waves. Inicialmente foi feita uma análise das velocidades características envolvidas, a qual indicou, para o arranjo estratificado, um fraco acoplamento entre os fenômenos de propagação de onda mais relacionados com a compressibilidade dos fluidos e os fenômenos de propagação de ondas mais relacionados com a variação hidrostática na seção transversal do canal. Os resultados desta análise foram utilizados para justificar uma modelagem de roll wave considerando os fluidos como incompressíveis. Testes numéricos também foram feitos, demonstrando que a hipótese de fluidos incompressíveis não leva a uma perda de qualidade na modelagem de ondas de gravidade em canais fechados. Foi observada a fragilidade da hipótese de perfil hidrostático de pressão nos modelos de dois fluidos e é proposta uma modificação para este perfil de pressão considerando os efeitos dinâmicos devido à forma rugosa da interface em um escoamento estratificado instável. São feitas comparações com resultados experimentais de literatura para o filme de líquido em regime laminar e foram feitos experimentos para o filme de líquido em regime turbulento. As comparações entre as simulações e os resultados experimentais demonstrando que o modelo proposto é consistente / Abstract: Using a Riemann Solver numerical method, a study to evaluate the process of evolution of roll waves in closed channels was implemented. The whole study is based on the phenomena of hyperbolic gravity waves propagation. It was used a one-dimensional model to represent the dynamics of roll waves. Initially an analysis of the propagation wave velocities involved on to the stratified flow was done, a weak coupling between the wave propagation phenomena more closely related to fluid compressibility and wave propagation phenomena more closely related to the change in the void fraction, due the gravity waves, was verified. The results of this analysis were used to justify a roll wave modeling considering the fluids as incompressible. Numerical tests were also performed, showing that the hypothesis of incompressible fluids does not lead to a loss of quality in the modeling of gravity waves in closed channels. It was observed a fragility of the hydrostatic pressure profile assumption to modeling unstable stratified flow. It was proposed a modification to this pressure profile, considering the dynamic effects of the roughness interface. Comparisons were made with experimental results from the literature for the liquid film in laminar and experiments made for the film of liquid in turbulent flow. This comparison between simulations and experimental results demonstrate that the proposed model is consistent / Doutorado / Explotação / Doutor em Ciências e Engenharia de Petróleo
|
184 |
Análise de um modelo termohidrodinâmico para mancais axiais / Analysis of a thermohydrodynamic model for thrust bearingsVieira, Leonardo Carpinetti, 1987- 26 August 2018 (has links)
Orientador: Kátia Lucchesi Cavalca Dedini / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-26T15:33:06Z (GMT). No. of bitstreams: 1
Vieira_LeonardoCarpinetti_D.pdf: 8387504 bytes, checksum: c4ddda686a98c9562fec4c86ff5f3a1c (MD5)
Previous issue date: 2014 / Resumo: Este trabalho possui como principal objetivo analisar a influência da variação da temperatura e, consequentemente, da viscosidade do fluido lubrificante sobre o comportamento de mancais axiais lubrificados de geometria fixa. Foi implementado numericamente, para isto, um modelo termohidrodinâmico (THD) baseado na resolução da Equação de Reynolds generalizada e da Equação de Energia através do Método dos Volumes Finitos (MVF), permitindo a obtenção da distribuição de pressão e da distribuição de temperatura ao longo do filme de óleo presente entre o mancal estacionário e o colar do eixo em movimento. Os resultados de capacidade de carga axial do mancal e o seu comportamento dinâmico, cuja análise é feita através dos coeficientes equivalentes de rigidez e amortecimento do lubrificante, são comparados com os resultados obtidos através de um modelo exclusivamente hidrodinâmico (HD), isotérmico e isoviscoso, previamente desenvolvido, buscando-se compreender o grau de influência da variação da temperatura na análise de mancais deste tipo. A influência de uma gama de parâmetros geométricos envolvidos, tais como comprimento angular da rampa e do segmento e inclinação da rampa, também é analisada, com o objetivo de se definir parâmetros geométricos ótimos do mancal que resultam em uma maior capacidade de carga axial. A influência de parâmetros de operação, tais como velocidade de rotação e espessura mínima de fluido, também é analisada. Resultados experimentais obtidos através de uma bancada de testes montada com um turbocompressor são utilizados para se validar os resultados do modelo implementado numericamente e analisar o comportamento de um sistema real capaz de funcionar a velocidades de rotação muito altas e sujeito a esforços axiais abruptos e elevados / Abstract: The main aim of this work is to analyse the influence of the temperature variation and, as consequence, the viscosity variation of the lubricant fluid on the behaviour of lubricated fixed-geometry thrust bearings. For this purpose, a thermohydrodynamic (THD) model, based on the solution of the Generalized Reynolds¿ Equation and of the Energy Equation by use of a Finite Volume Method, was developed, enabling the calculation of both pressure and temperature distribution along the fluid film present between the stationary bearing and the rotating collar. The results of axial load capacity of the bearing and its dynamic behaviour, characterised by the equivalent stiffness and damping coefficients, are compared to the results obtained by a previously developed purely hydrodynamic (HD), isothermal and isoviscous model, with the objective of understanding the influence of the temperature variation on the analysis of this type of bearings. The influence of several geometric parameters, such as pad length, ramp length and slope of the ramp, is also analysed, with the objective of defining the optimum values that lead to a higher load capacity. Also, the influence of operating parameters as speed and minimum film thickness on the behaviour of the system is studied. Experimental results, obtained at a test rig mounted with a small turbocharger are used to validate the simulated results and analyse the behaviour of a real system, capable of supporting high speeds of rotation and severe and abrupt external loads / Doutorado / Mecanica dos Sólidos e Projeto Mecanico / Mestre em Engenharia Mecânica
|
185 |
Designing a Simulator for an Electrically-Pumped Organic Laser DiodeHulbert, Robert 01 June 2019 (has links)
Organic semiconductors provide an alternative set of basis materials to fabricate electronic devices like PN Junctions, LEDs, and FETs. These materials have several benefits over traditional inorganic semiconductors including their mechanical flexibility, reliance on renewable resources, and inexpensive large-scale manufacturability. Despite the contemporary device implementations with organic semiconductors, a solid-state electrically-pumped organic laser diode does not exist. However, organically-based lasers do exist by utilizing the organic material strictly for optical gain. The challenge occurs when charge carriers appear in the organic material. The charge carriers must reach a concentration such that population inversion occurs producing optical gain. However, between the overlapping emission and absorption spectra of the organic material and insufficient carrier concentrations, positive optical gain remains elusive in electrically-pumped organic diodes. Organic device simulation provides a faster method of testing organic materials and device structures for positive optical gain based on known organic physics. The results generated from simulation provide key information in development of physical organic devices. This project produces a simulator capable of modeling current density and optical density with the intent of testing various device structures that allow for lazing in organic materials.
|
186 |
Matematicko - fyzikální analýza dynamického tlaku pro experimentální diferenciální komoru. / Mathematical-physical analysis of dynamic pressure for the experimental differentially pumped chamberLepltová, Kristýna January 2018 (has links)
This thesis is based on the series of scholarly article dedicated to the issue of pumping in the differential scanning chamber of an environmental scanning microscope. The thesis is based on Danilatos’s study where the pumping of the differential pumped chamber is solved by means of the Monte Carlo statistical method. The thesis analyzes gas flow in the experimental chamber using the Pipot tube. The analyses will be used for the design of the experimental chamber which will serve for the experimental evaluation of the flow results in the chamber using the continuum mechanics.
|
187 |
Numerical Modeling of Equiaxed Solidification in Direct Chill CastingJohn Coleman (9154625) 16 December 2020 (has links)
<p><a>Direct chill
(DC) casting is the main production method for wrought aluminum alloys. In this
semi-continuous process, significant heat is extracted through a narrow,
solidified shell by impinging water jets. A combination of rapid cooling and
inoculation of the liquid metal with heterogenous nucleation sites (grain
refiner) produces the proper conditions for equiaxed solidification. As
equiaxed grains nucleate and grow in the slurry, they are transported by
natural convection until their eventual coalescence into a rigid mush. The
preferential accumulation of these solute-depleted grains in localized regions
of the casting can lead to long range composition differences known as
macrosegregation. Because macrosegregation cannot be mitigated by subsequent processing,
it is critical to understand and prevent its development during casting. </a></p>
<p>Numerical
models are often used to gain insight into the interplay of the different
transport phenomena that cause macrosegregation. The formation of mobile equiaxed
grains creates a multiphase system with many moving interfaces, causing several
modeling challenges. In principle, a model could be formulated in terms of
local instantaneous variables describing the evolution of these interfaces,
however the associated computational cost prohibits its extension to the length
scale of industrial castings. For this reason, macroscopic transport equations
are mathematically formulated using volume averaging methods. Two different volume-averaged
model formulations can be distinguished in the solidification literature. The first
approach is the multiphase formulation, which solves separate sets of governing
equations for each phase that are coupled using microscale interfacial
balances. While this approach retains closure models to describe the behavior
of the sub-grid interfaces, these interfacial models introduce significant
uncertainty that is propagated through the model. The second approach is the mixture
formulation, which solves a single set of governing equations for the mixture and
utilizes more pragmatic closure relationships. While this approach
significantly reduces the complexity and computational cost of the model,
previous formulations have oversimplified the microscale transport. Recognizing
the advantages and disadvantages of both formulations, a mixture model is rigorously
derived, retaining appropriate relationships for the grain structure and
microsegregation behavior in equiaxed solidification </p>
<p>Implementation
of this model into a 3-D finite volume method (FVM) code using a co-located
grid is discussed along with appropriate treatment of the discontinuous body
forces and phase mass fluxes across the interface between the slurry and rigid
mush. More specifically, body forces in the momentum equation are treated at
the face-centers of a control volume to prevent erroneous velocity oscillations
near this interface, and a diffuse phase flux method is proposed to reduce the
sensitivity of composition predictions to the numerical grid. The proposed methods
are verified across a wide range of conditions present in equiaxed solidification.
</p>
<p>This
model is then used to investigate the role of grain motion on macrosegregation
development in equiaxed solidification, specifically in horizontal and vertical
DC casting. In horizontal DC casting, the casting axis is perpendicular to
gravity and there is a tendency for grains to accumulate along the bottom of
the ingot. Feeding liquid metal through a constrained inlet near the bottom suspends
grains in the slurry, both reducing the overall macrosegregation and improving the
macrosegregation symmetry in the ingot. In vertical DC casting, the casting
axis is parallel to gravity and there is a tendency for grains to accumulate in
the center of the ingot. It is determined by a combination of simulations in
the current work and previous experimental results that a strong localized jet
at the centerline can suspend grains in the slurry and reduce negative
centerline segregation. The change in segregation is attributed to a
combination of reducing the accumulation of solute-depleted grains near the
centerline and thinning the rigid mush where solidification shrinkage pulls
enriched liquid away from the centerline. The strong localized jet also causes
significant refinement and homogenization of the grain structure, which improves
the mechanical properties of the ingot. These studies indicate that it is
beneficial for DC casting practices to move towards agitated or stirred melts,
and away from conventional practices which promote thermal stratification and localized
accumulation of equiaxed grains.</p>
|
188 |
Mathematical and Numerical Approaches for Transport Phenomena in Surface Water Networks / 地表水ネットワークにおける輸送現象に対する数理・数値的アプローチYoshioka, Hidekazu 23 March 2016 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(農学) / 乙第13021号 / 論農博第2831号 / 新制||農||1042(附属図書館) / 学位論文||H28||N4967(農学部図書室) / 32949 / 京都大学大学院農学研究科地域環境科学専攻 / (主査)教授 藤原 正幸, 教授 村上 章, 准教授 宇波 耕一 / 学位規則第4条第2項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
|
189 |
A Low-Dissipation, Limited Second-Order Scheme for Use with Finite Volume Computational Fluid Dynamics SimulationsPoe, Nicole Mae Wolgemuth 11 May 2013 (has links)
Finite volume methods employing second-order gradient reconstruction schemes are often utilized to computationally solve the governing equations of fluid mechanics and transport. These schemes, while not as dissipative as first-order schemes, frequently produce oscillatory solutions in regions of discontinuities and/or unsatisfactory levels of dissipation in smooth regions of the variable field. Limiters are often employed to reduce the inherent variable over- and under-shoot; however, they can significantly increase the numerical dissipation of a solution, eroding a scheme’s performance in smooth regions. A novel gradient reconstruction scheme, which shows significant improvement over traditional second-order schemes, is presented in this work. Two implementations of this Optimization-based Gradient REconstruction (OGRE) scheme are examined: minimizing an objective function based on the mismatch between local reconstructions at midpoints or selected quadrature points between cell stencil neighbors. Regardless of the implementation employed, the resulting gradient calculation is a compact, implicit method that can be used with unstructured meshes by employing an arbitrary computational stencil. An adjustable weighting parameter is included in the objective function that allows the scheme to be tuned towards either greater accuracy or greater stability. To address over- and undershoot of the variable field near discontinuities, non-local, non-monotonic (NLNM) and local, non-monotonic (LNM) limiters have also been developed, which operate by enforcing cell minima and maxima on dependent variable values projected to cell faces. The former determines minimum and maximum values for a cell through recursive reference to the minimum and maximum values of its upwind neighbors. The latter determines these bounding values through examination of the extrema of values of the dependent variable projected from the face-neighbor cell into the original cell. Steady state test cases on structured and unstructured grids are presented, exhibiting the low-dissipative nature of the scheme. Results are primarily compared to those produced by existing limited and unlimited second-order upwind (SOU) and first-order upwind (FOU). Solution accuracy, convergence rate and computational costs are examined.
|
190 |
Fluid-Structure Interaction for a Deformable Anisotropic Cylinder: A Case StudyDecker, Jared T 01 January 2021 (has links)
For a structure designed to interact with the surrounding fluid, structural deformation under loads induced by fluid flows is an important factor to consider, and one which is traditionally difficult to account for analytically. Coupling the finite element method for structural analysis with the finite volume method for the determination of fluid response allows for accurate simulation of the pressure and shearing loads applied by the fluid onto the fluid-structure interface, while also determining localized structural displacements that would cause changes to the geometry of the interface. This work seeks to simulate the behavior of cylinders with varying heights and stiffnesses under external flows with low Reynolds numbers. To address structural deformation accurately in the simulation, a morphing and remapping algorithm is applied to the fluid-structure interface. With additional consideration for anisotropy in the structure's elasticity, these analyses could potentially support the development of flexible components that deform in predetermined ways under anticipated fluid loads, allowing for simpler and more efficient solutions to control flow scenarios that traditionally require moving components and control surfaces.
|
Page generated in 0.0625 seconds