• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 149
  • 104
  • 60
  • 25
  • 19
  • 14
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 414
  • 414
  • 241
  • 157
  • 94
  • 93
  • 79
  • 71
  • 71
  • 68
  • 66
  • 59
  • 58
  • 57
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

"Simulação do processo de moldagem por injeção 2D usando malhas não estruturadas" / Simulation of the 2D Injection Molding Process Using Unstructured Meshes

Kémelli Campanharo Estacio 29 March 2004 (has links)
Moldagem por injeção é um dos mais importantes processos industriais para produção de produtos plásticos finos. Esse processo é dividido essencialmente em quatro estágios: plastificação, preenchimento, empacotamento e resfriamento. O escoamento de um fluido caracterizado por alta viscosidade em uma cavidade estreita é um problema tipicamente encontrado em processos de moldagem por injeção.Neste caso, o escoamento pode ser descrito por uma formulação conhecida como aproximação de Hele-Shaw. Tal formulação pode ser derivada das equações de conservação tridimensionais usando um número de suposições a respeito do polímero injetado e da geometria da cavidade do molde, juntamente com a integração e o acoplamento das equações da conservação da quantidade de movimento e da continuidade. Essa formulação, referindo às limitações da geometria do molde como sendo canais estreitos e quase sem curvatura, é comumente denominada formulação 2 1/2D. Neste trabalho, é apresentada uma técnica para a simulação da fase de preenchimento de um processo de moldagem por injeção, usando essa formulação 2 1/2D, com um método de volumes finitos e malhas não estruturadas. O modelo de Cross modificado com dependência da temperatura de Arrhenius é empregado para descrever a viscosidade do polímero fundido. O campo de distribuição de temperatura é tridimensional e é resolvido usando um esquema semi-Lagrangeano baseado em volumes finitos. As malhas não estruturadas utilizadas são geradas por triangulação de Delaunay e o método numérico implementado usa a estrutura de dados topológica SHE - Singular Handle Edge, que é capaz de lidar com condições de contorno e singularidades, aspectos comumente encontrados em simulações numéricas de escoamento de fluidos. / Injection molding is one of the most important industrial processes for the manufacturing of thin plastic products. This process can be divided into four stages: plastic melting, filling, packing and cooling phases. The flow of a fluid characterized by high viscosity in a narrow gap is a problem typically found in injection molding processes. In this case, the flow can be described by a formulation known as Hele-Shaw approach. Such formulation can be btained from the three-dimensional conservation equation using a number of assumptions regarding the injected polymer and the geometry of the mold, together with the integration and the coupling of the momentum and continuity equations. This approach, referring to limitations of the mould geometry to narrow, weakly curved channels, is usually called 2 1/2D approach. In this work a technique for the simulation of the filling stage of the injection molding process, using this 2 1/2D approach, with a finite volume method and unstructured meshes, is presented. The modified-Cross model with Arrhenius temperature dependence is employed to describe the viscosity of the melt. The temperature field is 3D and it is solved using a semi-Lagrangian scheme based on the finite volume method. The employed unstructured meshes are generated by Delaunay triangulation and the implemented numerical method uses the topological data structure SHE - Singular Handle Edge, capable to deal with boundary conditions and singularities, aspects commonly found in numerical simulation of fluid flow.
212

Solids transport in laminar, open channel flow of non-Newtonian slurries

Spelay, Ryan Brent 26 January 2007
Thickened tailings production and disposal continue to grow in importance in the mining industry. In particular, the transport of oil sands tailings is of interest in this study. These tailings must be in a homogeneous state (non-segregating) during pipeline flow and subsequent discharge. Tailings are often transported in an open channel or flume. Slurries containing both clay and coarse sand particles typically exhibit non-Newtonian rheological behaviour. The prediction of the flow behaviour of these slurries is complicated by the limited research activity in this area. As a result, the underlying mechanisms of solids transport in these slurries are not well understood. To address this deficiency, experimental studies were conducted with kaolin clay slurries containing coarse sand in an open circular channel.<p> A numerical model has been developed to predict the behaviour of coarse solid particles in laminar, open channel, non-Newtonian flows. The model involves the simultaneous solution of the Navier-Stokes equations and a scalar concentration equation describing the behaviour of coarse particles within the flow. The model uses the theory of shear-induced particle diffusion (Phillips et al., 1992) to provide a number of relationships to describe the diffusive flux of coarse particles within laminar flows. A sedimentation flux has been developed and incorporated into the Phillips et al. (1992) model to account for gravitational flux of particles within the flow. Previous researchers (Gillies et al., 1999) have shown that this is a significant mechanism of particle migration.<p> The momentum and concentration partial differential equations have been solved numerically by applying the finite volume method. The differential equations are non-linear, stiff and tightly coupled which requires a novel means of analysis. Specific no-flux, no-slip and no-shear boundary conditions have been applied to the channel walls and free surface to produce simulated velocity and concentration distributions. The results show that the model is capable of predicting coarse particle settling in laminar, non-Newtonian, open channel flows. The results of the numerical simulations have been compared to the experimental results obtained in this study, as well as the experimental results of previous studies in the literature.
213

Non-inverted skew upwind scheme for numerical heat transfer and fluid flow simulations

Ogedengbe, Emmanuel Olakunle Busayo 07 September 2006 (has links)
This thesis studies advection modeling for heat transfer and fluid flow problems using a new Non--Inverted Skew Upwind Scheme (called NISUS). Variants of the new scheme are formulated and developed with 8-noded hexahedral elements using the Finite Element Method (FEM)and rectangular elements based on a Finite Volume Method (FVM). A new method of mass weighting to predict convective fluxes of each scalar from the nodal point values is developed. Due to an explicit representation in terms of nodal variables, local inversion of the upwind coefficient matrix is not needed. Also, this thesis evaluates two variants of the new scheme (i.e., 3-node / 3-point and 4-node / 8-point formulations) within a 3--D FEM and a third variant within a 2--D FVM. The 3--D FEM variants are applied to a variety of test problems involving the transport of a scalar variable, while the 2--D FVM variant is applied to fluid flow problems including natural convection in an enclosure and micro--channel flow simulations. The promising performance of NISUS, as compared with exact and previous solutions, is demonstrated both in terms of accuracy and stability. Furthermore, a new data storage format called Compressed Banded Data (CBD) is developed for sparse banded matrices generated by the control volume finite element method (CVFEM). The platform of the new CBD structure permits dynamic switching between various solvers, without any procedural change in the implementation of existing simulation software. The performance of different Krylov techniques with an ILU(0) preconditioner is observed and compared in three test problems with a direct solver. / October 2006
214

Modeling and OpenFOAM simulation of streamers in transformer oil / Modellering och OpenFOAM-simulering av streamers i transformatorolja

Fors, Jonathan January 2012 (has links)
Electric breakdown in power transformers is preceded by pre-breakdown events such as streamers. The understanding of these phenomena is important in order to optimize liquid insulation systems. Earlier works have derived a model that describes streamers in transformer oil and utilized a finite element method to produce numerical solutions. This research investigates the consequences of changing the numerical method to a finite volume-based solver implemented in OpenFOAM. Using a standardized needle-sphere geometry, a number of oil and voltage combinations were simulated, and the results are for the most part similar to those produced by the previous method. In cases with differing results the change is attributed to the more stable numerical performance of the OpenFOAM solver. A proof of concept for the extension of the simulation from a two-dimensional axial symmetry to three dimensions is also presented. / Elektriska genomslag i högspänningstransformatorer föregås av bildandet av elektriskt ledande kanaler som kallas streamers. En god förståelse av detta fenomen är viktigt vid konstruktionen av oljebaserad elektrisk isolation. Tidigare forskning i ämnet har tagit fram en modell för fortplantningen av streamers. Denna modell har sedan lösts numeriskt av ett beräkningsverktyg baserat på finita elementmetoden. I denna uppsats undersöks konsekvenserna av att byta metod till finita volymsmetoden genom att implementera en lösare i OpenFOAM. En standardiserad nål-sfär-geometri har ställts upp och ett flertal kombinationer av oljor och spänningar har simulerats. De flesta resultaten visar god överensstämmande med tidigare forskning medan resultat som avviker har tillskrivits de goda numeriska egenskaperna hos OpenFOAM-lösaren. En ny typ av simulering har även genomförts där simulationen utökas från en tvådimensionell axisymmetrisk geometri til tre dimensioner.
215

Theoretical issues in Numerical Relativity simulations

Alic, Daniela Delia 18 September 2009 (has links)
In this thesis we address several analytical and numerical problems related with the general relativistic study of black hole space-times and boson stars. We have developed a new centered finite volume method based on the flux splitting approach. The techniques for dealing with the singularity, steep gradients and apparent horizon location, are studied in the context of a single Schwarzschild black hole, in both spherically symmetric and full 3D simulations. We present an extended study of gauge instabilities related with a class of singularity avoiding slicing conditions and show that, contrary to previous claims, these instabilities are not generic for evolved gauge conditions. We developed an alternative to the current space coordinate conditions, based on a generalized Almost Killing Equation. We performed a general relativistic study regarding the long term stability of Mixed-State Boson Stars configurations and showed that they are suitable candidates for dark matter models. / En esta tesis abordamos varios problemas analíticos y numéricos relacionados con el estudio de agujeros negros relativistas y modelos de materia oscura. Hemos desarrollado un nuevo método de volúmenes finitos centrados basado en el enfoque de la división de flujo. Discutimos las técnicas para tratar con la singularidad, los gradientes abruptos y la localización del horizonte aparente en el contexto de un solo agujero negro de Schwarzschild, en simulaciones tanto con simetría esférica como completamente tridimensionales. Hemos extendido el estudio de una familia de condiciones de foliaciones evitadoras de singularidad y mostrado que ciertas inestabilidades no son genéricas para condiciones de gauge dinámicas. Desarrollamos una alternativa a las prescripciones actuales basada en una Almost Killing Equation generalizada. Hemos realizado también un estudio con respecto a la estabilidad a largo plazo de configuraciones de Mixed-State Boson Stars, el cual sugiere que estas podrían ser candidatas apropiadas para modelos de materia oscura.
216

Coupled High-Order Finite Difference and Unstructured Finite Volume Methods for Earthquake Rupture Dynamics in Complex Geometries

O'Reilly, Ossian January 2011 (has links)
The linear elastodynamic two-dimensional anti-plane stress problem, where deformations occur in only one direction is considered for one sided non-planar faults. Fault dynamics are modeled using purely velocity dependent friction laws, and applied on boundaries with complex geometry. Summation-by-parts operators and energy estimates are used to couple a high-order finite difference method with an unstructured finite volume method. The unstructured finite volume method is used near the fault and the high-order finite difference method further away from the fault where no complex geometry is present. Boundary conditions are imposed weakly on characteristic form using the simultaneous approximation term technique, allowing explicit time integration to be used. Numerical computations are performed to verify the accuracy and time stability, of the method.
217

Spray and Wall Film Modeling with Conjugate Heat Transfer in OpenFOAM

Sjölinder, Emil January 2012 (has links)
This master thesis was provided by Scania AB. The objective of this thesis was to modify an application in the free Computational Fluid Dynamics software OpenFOAM to be able to handle spray and wall film modeling of a Urea Water Solution together with Conjugate Heat Transfer. The basic purpose is to widen the knowledge of the vaporization process of a Urea Water Solution in the exhaust gas after treatment system for a diesel engine by using OpenFOAM. First, urea has been modeled as a very viscous liquid at low temperature to mimic the solidication process of urea. Second, the development of the new application has been done. At last, test simulations of a simple test case are performed with the new application. The results are then compared with simplied hand calculations to verify a correct behavior of certain exposed source terms. The new application is working properly for the test case but to ensure the reliability, the results need to be compared with another Computational Fluid Dynamics software or more preferable, real experiments. For more advanced geometries, the continued development presented last in this thesis is highly recommended to follow.
218

Solids transport in laminar, open channel flow of non-Newtonian slurries

Spelay, Ryan Brent 26 January 2007 (has links)
Thickened tailings production and disposal continue to grow in importance in the mining industry. In particular, the transport of oil sands tailings is of interest in this study. These tailings must be in a homogeneous state (non-segregating) during pipeline flow and subsequent discharge. Tailings are often transported in an open channel or flume. Slurries containing both clay and coarse sand particles typically exhibit non-Newtonian rheological behaviour. The prediction of the flow behaviour of these slurries is complicated by the limited research activity in this area. As a result, the underlying mechanisms of solids transport in these slurries are not well understood. To address this deficiency, experimental studies were conducted with kaolin clay slurries containing coarse sand in an open circular channel.<p> A numerical model has been developed to predict the behaviour of coarse solid particles in laminar, open channel, non-Newtonian flows. The model involves the simultaneous solution of the Navier-Stokes equations and a scalar concentration equation describing the behaviour of coarse particles within the flow. The model uses the theory of shear-induced particle diffusion (Phillips et al., 1992) to provide a number of relationships to describe the diffusive flux of coarse particles within laminar flows. A sedimentation flux has been developed and incorporated into the Phillips et al. (1992) model to account for gravitational flux of particles within the flow. Previous researchers (Gillies et al., 1999) have shown that this is a significant mechanism of particle migration.<p> The momentum and concentration partial differential equations have been solved numerically by applying the finite volume method. The differential equations are non-linear, stiff and tightly coupled which requires a novel means of analysis. Specific no-flux, no-slip and no-shear boundary conditions have been applied to the channel walls and free surface to produce simulated velocity and concentration distributions. The results show that the model is capable of predicting coarse particle settling in laminar, non-Newtonian, open channel flows. The results of the numerical simulations have been compared to the experimental results obtained in this study, as well as the experimental results of previous studies in the literature.
219

Implicit runge-kutta methods to simulate unsteady incompressible flows

Ijaz, Muhammad 15 May 2009 (has links)
A numerical method (SIMPLE DIRK Method) for unsteady incompressible viscous flow simulation is presented. The proposed method can be used to achieve arbitrarily high order of accuracy in time-discretization which is otherwise limited to second order in majority of the currently used simulation techniques. A special class of implicit Runge-Kutta methods is used for time discretization in conjunction with finite volume based SIMPLE algorithm. The algorithm was tested by solving for velocity field in a lid-driven square cavity. In the test case calculations, power law scheme was used in spatial discretization and time discretization was performed using a second-order implicit Runge-Kutta method. Time evolution of velocity profile along the cavity centerline was obtained from the proposed method and compared with that obtained from a commercial computational fluid dynamics software program, FLUENT 6.2.16. Also, steady state solution from the present method was compared with the numerical solution of Ghia, Ghia, and Shin and that of Erturk, Corke, and Goökçöl. Good agreement of the solution of the proposed method with the solutions of FLUENT; Ghia, Ghia, and Shin; and Erturk, Corke, and Goökçöl establishes the feasibility of the proposed method.
220

Development Of An Axisymmetric, Turbulent And Unstructured Navier-stokes Solver

Mustafa, Akdemir 01 May 2010 (has links) (PDF)
An axisymmetric, Navier-Stokes finite volume flow solver, which uses Harten, Lax and van Leer (HLL) and Harten, Lax and van Leer&ndash / Contact (HLLC) upwind flux differencing scheme for spatial and uses Runge-Kutta explicit multi-stage time stepping scheme for temporal discretization on unstructured meshe is developed. Developed solver can solve the compressible axisymmetric flow. The spatial accuracy of the solver can be first or second order accurate. Second order accuracy is achieved by piecewise linear reconstruction. Gradients of flow variables required for piecewise linear reconstruction are calculated by Green-Gauss theorem. Baldwin-Lomax turbulent model is used to compute the turbulent viscosity. Approximate Riemann solver of HLL and HLLC implemented in solver are validated by solving a cylindrical explosion case. Also the solver&rsquo / s capability of solving unstructured, multi-zone domain is investigated by this problem. First and second order results of solver are compared by solving the flow over a circular bump. Axisymmetric flow in solid propellant rocket motor is solved in order to validate the axisymmetric feature of solver. Laminar flow over flat plate is solved for viscous terms validation. Turbulent model is studied in the flow over flat plate and flow with mass injection test cases.

Page generated in 0.0699 seconds