• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 16
  • 12
  • 9
  • 2
  • 2
  • Tagged with
  • 172
  • 172
  • 43
  • 39
  • 39
  • 36
  • 35
  • 34
  • 33
  • 31
  • 26
  • 25
  • 25
  • 23
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Automated commissioning of HVAC systems using first principle models

Kelso, Richard M. January 2003 (has links)
Commissioning of HVAC systems has potential for significant improvements in occupant satisfaction, comfort and energy consumption, but is very labour-intensive and expensive as practiced at this time. Previous investigators have capitalized on digital control systems' capability of logging and storing data and of interfacing with external computers for open loop control by developing methods of automated fault detection and diagnosis during normal operation. Some investigators have also considered the application of this technique in commissioning. This thesis investigates the possibility of utilizing first principles and empirical models of air-handling unit components to represent correct operation of the unit during commissioning. The models have parameters whose values can be determined from engineering design intent information contained in the construction drawings and other data available at commissioning time. Quasi-dynamic models are developed and tested. The models are tested against design intent information and also against data from a real system operating without known faults. The results show the models agree well with the measured data except for some false positive indications, particularly in the damper and fan models, during transients. A procedure for estimating uncertainty in the instrumentation and the models is developed. The models are also tested against artificial faults and are able to detect all of the faults. Methods of diagnosing the faults are discussed.
52

Ab-initio First Principle Modeling of Structural and Magnetic Phase Transformations in Co-Ni-Al Based Shape Memory Alloys

Thawabi, Hassan S 03 October 2013 (has links)
Ferromagnetic shape memory alloys FSMAs have diverse application, especially in the aerospace and bio-medical industries. They are a class of active and smart materials exhibiting strains under the influence of an applied magnetic field. These magnetic properties are mainly attributed to the martensitic structural phase trans- formation these material experience in response to temperature variation. Co-Ni-Al based alloys are one of the most promising ferromagnetic shape memory alloy FSMA that has been put recently under extensive study by researchers. They have shown extensive and promising features specifically those related to self-actuation. The effect of valence electron concentration and magnetic properties of Co-Ni-Al based ferromagnetic shape memory alloys on the martensitic transformations were analyzed utilizing Ab-initio first principle calculations. The variations of martensite start temperatures (Ms) and magnetic properties of a number of stoichiometric and mnon-stoichiometric Co-Ni-Al ferromagnetic shape memory alloys (FSMA’s) with B2 austenite structure were studied and analyzed as a function of composition and lattice site ordering and site preference. A major conclusion of this thesis suggests that the magnetic valence number (Zm) should be considered in conjunction to the e/a ratio if the composition profile of the Ms is to be determined. Both Monte-Carlo and Ab-initio simulations were implemented to obtain the magnetic Heisenberg’s exchange coupling parameters (J m) and model the magnetic transformations in stoichiometric Co2NiAl FSMAs. Two different cubic structures, ordered and disordered were compared to their tetragonal distortions martensitic phases and their Curie temperature (TC ) were obtained from the Monte-Carlo magnetic susceptibility temperature profile.
53

A teoria do funcional da densidade na caracterização de fases intermetálicas ordenadas

Pinto, Leandro Moreira de Campos [UNESP] 03 November 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:19Z (GMT). No. of bitstreams: 0 Previous issue date: 2009-11-03Bitstream added on 2014-06-13T19:39:43Z : No. of bitstreams: 1 pinto_lmc_me_bauru.pdf: 3368770 bytes, checksum: 3eea6b86b88292db626794855037e7c0 (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / A utilização das fases intermetálicas ordenadas como eletrocatalisadores em células a combustível já pode ser considerada como uma solução iminente para os problemas que envolvem a eficiência e as questões econoômicas. Para assegurar que as propriedades geométricas e eletrônicas destes materiais sejam realmente as almejadas para atender a todas as exigências na eletrocatálise das reações de oxidação das moléculas é necessário um estudo aprofundado de caracterização das fases intermetálicas, comumente realizado por criteriosas técnicas experimentais. Entretanto, experimentalmente, a caracterização destes materiais não fornece informações precisas que permitam correlacionar as propriedades dos materiais com o seu desempenho frente a uma dada reação eletrostática. Desta forma, uma estratégia metodológica para se obter um conhecimento mais adequado no estudo das fases intermetálicas é a utilização de métodos computacionais, baseados na Teoria do Funcional da Densidade (DFT). A metodologia empregada neste trabalho aborda uma sistemática para a otimização das propriedades geométricas através da minimização da energia total do sistema, bem como uma avaliação da estrutura eletrônica para estes materiais por meio de projeções sobre os orbitais atômicos na densidade de estados e de mapas de densidade de carga. O processo de otimização é feito por cálculos de campo auto-consistente sucessivos que variam o parâmetro de rede até encontrar uma estrutura que possua energia mínima, este processo pode ser realizado de duas formas, manual e automaticamente pelo código computacional, os resultados obtidos mostram que ambas as formas possuem a mesma precisão, levando a valores quase idênticos e que permitem reproduzir bem os cristais para os materiais estudados. A análise comparativa entre os dados cristalográficos da literatura e os resultados... / The use of ordered intermetallic phases as electrocatalysts in fuel cells can now be regarded as an imminent solution for the problems concerning the efficiency of the device and for economic issue. To ensure that the geometric and electronic properties of these materials are actually suitable for the requirements in the electrocatalysis of melecules oxidation reactions need a meticulous characterization of the intermetallic phases, in general done by standard experimental techniques. However, the characterization of these materials performed solely experimentally does not provide accurate information to enable correlation of the properties of the materials with their performance against a given electrocatalytic reaction. Thus, a methodological strategy for obtaining a better knowledge in the study of ordered intermetallic phases is the use of computational methods, based on the Density Functional Theory. The methodology used in in thius research presents a sytematic optimization of the geometric properties by minimizing the total energy of the system and an evaluation of the electronic structure for these materials by means of the density of states projected onto atomic orbital and charge density maps. The optimization process is done by successively self-consistent field calculations that very the lattice parameter to find a structure that has a minimum energy, this process can be accomplished in two ways, manually and automatically by the computer code, the results show that both forms have the same precision, leading to almost identical identical values and allow to reproduce well the crystals of the studied materials. A comparative analysis of the crystallographic data from the literature and the results presented here show very small errors (in the order of 2-3% for most of the materials), which can be attributed exclusively to the various mathematical approaches applied... (Complete abstract click electronic access below)
54

Simulation par éléments finis à partir de calculs ab-initio du comportement ferroélectrique / First-principles-based finite element computation of the ferroelectric behaviour

Albrecht, David 22 April 2010 (has links)
Les propriétés des matériaux ferroélectriques proviennent principalement de l’influencedes conditions aux limites et des déformations sur la polarisation. Cette influence est encoreplus grande à de petites échelles ou des structures particulières de la polarisation apparaissent,comme les vortex dans les cubes quantiques ou des structures en rayures dans lescouches minces. Pour le calcul, à très basses échelles, de telles structures de polarisation, lesHamiltonien effectifs, basés sur les calculs ab-initio sont les plus utilisés. Parallèlement Lesmodèles continus sont préconisés à plus grandes échelles. Néanmoins, il n’existe pas de lienentre ces deux modèles. Le but de cette thèse est alors de construire une approche permettantde relier ces deux modèles et par cela même ces différentes échelles.Notre modèle se base sur un Hamiltonien effectif écrit pour le titanate de baryum enfonction de la polarisation et des déformations. Cet Hamiltonien est reformulé de façon àdécrire un milieu continu. Les difficultés de cette reformulation proviennent des interactionsnon locales. Le résultat est alors un système d’équations aux dérivées partielles, décrivantl’équilibre et les conditions aux limites. La température est ensuite introduite de façon effectivedans les coefficients de ces équations. Notre modèle ressemble fortement aux modèlesde Landau.Une telle approche est appliquée dans les cubes quantiques et les couches minces óu l’organisationdes domaines dépend de la taille. Les résultats montrent l’implication de la méthodedes éléments finis sur la précision. La formation de vortex dans les cubes quantiquesest bien reproduite. L’agencement en domaines de polarisation alternée dans les couchesminces est elle aussi bien reproduite pour les couches minces. De plus en augmentant l’épaisseurde ces couches minces, la périodicité de cet agencement alterné est modifié, comportementdécrit par la loi de Kittel qui est ici calculée et comparée aux résultats expérimentaux. / Physicals properties of ferroelectric materials mainly arise from the fact that the polarizationis strongly influenced by strain and electrical boundary conditions, which may changeits orientation and magnitude. At small scales, this influence is even stronger and unusualdomain structures are produced like vortices in quantum dots or stripes in thin films. For thecalculation of domain structures, at small scales, first-principle-based effective Hamiltonianare widely used whereas at higher scales, continuum models are predominants. Nevertheless,in between there is no computational method connecting both scales. Therefore„ thegoal of this dissertation is to develop and build new approaches in order to bridge these twoseparated scales.Our model stems for classical effective Hamiltonian, written for barium titanate as afunction of the polarization and strain. This Hamiltonian is then formulated in order tocorrespond to a continuous description. Difficulties arise from non local interactions. In theend, the Hamiltonian is transformed into a set of partial differential equations describing theequilibrium and the boundary conditions. The temperature is then introduced in such a waythat makes evolve the coefficients of those sets of equations. We therefore reconstructed aLandu-like model.Such approach can be applied in quantum dots and thin films where the domain organizationdepend on the size. The results show how to apply finite element in order to obtainpatterns of polarizations with the wanted precision. The vortices shapes of domain patternin quantum dots is well reproduced. The stripes-like polarization pattern is also well reproducedin thin films. Besides expanding thickness of those films change the periodicity ofthose stripes, behaviour described by the Kittel law. This law is calculated and compared tomeasurements.
55

ESTUDO DA UTILIZAÇÃO DOS NANOTUBOS DE CARBONO NA REMOÇÃO E DETECÇÃO DE DEFENSIVOS AGRÍCOLAS: UM ESTUDO DE PRIMEIROS PRINCÍPIOS

Tonetto, Bruno Costa 27 June 2018 (has links)
Made available in DSpace on 2018-06-27T18:55:59Z (GMT). No. of bitstreams: 3 Bruno Costa Tonetto.pdf: 4606277 bytes, checksum: 56a89ee85ff68359b60dc3584659891f (MD5) Bruno Costa Tonetto.pdf.txt: 131014 bytes, checksum: fa6728959cdd9a52eaf5099f7e039da5 (MD5) Bruno Costa Tonetto.pdf.jpg: 3151 bytes, checksum: efcabfce81a5016254f454fea90241eb (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / We studied the structural and electronic properties of paraquat, glyphosate, aminomethylphosphonic acid, methylamine and formaldehyde molecules interacting with carbon nanotubes in pristine form and carboxylated, through computer simulations based on Density Functional Theory (DFT). Carbon nanotubes (CNTs) is emerging as a material that presents a series of specific properties, making these compounds as promising systems for a variety applications. Among these, we highlight use carbon nanotubes as filters or sensors of toxic molecules. In this work, the objective is to use carbon nanotubes to removal or detection paraquat, glyphosate and its derivatives of food and environment. Our results showed the interaction between these molecules and the carbon nanotubes does not change the properties of these herbicides, with binding energies ranging from 0.12 eV to 0.82 eV. For the carboxylated carbon nanotubes obtained binding energies from 0.33eV to 1.41eV. Therefore, these values indicate that carboxylated nanotubes are not suitable for sensing and filtering because the high energy cost required for the eventual removal of these molecules of the tubes. Failure to change the molecules in the presence of carbon nanotubes is desired for future experimental application of carbon nanotubes as a sensor or filter of these pollutants, ie, our results suggest that either a filter based nanotubes can be reused several times to removal these molecules, as well as molecules after they are removed from the presence of nanotubes can be reused in agriculture again. / Através de simulações computacionais baseadas na Teoria do Funcional da Densidade (DFT) estudamos as propriedades eletrônicas e estruturais da molécula de paraquat, glifosato, ácido aminometilfosfônico, metilamina e formaldeído interagindo com nanotubos de carbono puros e carboxilados. Os nanotubos de carbono (NTs) vêm surgindo como promissores compostos para uma série de aplicações. Entre estas, podemos destacar a utilização de NTs como filtro ou sensores de moléculas tóxicas. Assim, neste trabalho, o objetivo é utilizar NTs puros e carboxilados para a remoção ou detecção das moléculas de paraquat, glifosato e seus derivados dos alimentos e do meio ambiente. Nossos resultados mostraram que a interação entre essas moléculas e os NTs ocorre via uma adsorção física, pois não altera as propriedades dos nanotubos, tendo energias de ligação que variam de 0,12 eV a 0,82 eV. Para os NT carboxilados obtivemos energias de ligação de 0,33 eV e 1,41 eV, respectivamente, sugerindo que os NTs carboxilados não são os mais indicados para o sensoriamento e filtragem destas moléculas, pois a remoção posterior destas moléculas do nanotubo teria um alto custo energético. A adsorção física entre os NTs e as moléculas dos poluentes estudada é de grande interesse para uma possível aplicação experimental desses NTs como sensor ou filtro destes poluentes. Um filtro a base de nanotubos poderia, em princípio ser reutilizado várias vezes para a remoção/filtragem destas moléculas, bem como as mesmas após serem retiradas da presença dos nanotubos poderão ser reutilizadas na agricultura novamente, sem grande custo energético.
56

INTERAÇÃO DE NANOTUBOS DE CARBONO COM CISTEÍNA E BIOTINA: UMA ABORDAGEM TEÓRICA

Aimi, Daniele Morgenstern 09 January 2012 (has links)
Submitted by MARCIA ROVADOSCHI (marciar@unifra.br) on 2018-08-16T16:45:04Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao_DanieleMorgensternAimi.pdf: 5748053 bytes, checksum: d57b44570d4e19a760d7a8379dcc9315 (MD5) / Made available in DSpace on 2018-08-16T16:45:04Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao_DanieleMorgensternAimi.pdf: 5748053 bytes, checksum: d57b44570d4e19a760d7a8379dcc9315 (MD5) Previous issue date: 2012-01-09 / The structural and electronic properties of biotin and cysteine molecules interacting with pure, carboxylated and vacancy-type defects carbon nanotubes was evaluated using ab initio simulations. Carbon nanotubes (NTC) have been used for a variety of applications. Among these, we highlight the use of NTC as sensors for biological molecules. Thus, the objective of this work is to use NTC pure carboxylated and defective molecules interacting with biotin and cysteine in the development of nanosensors for these molecules. Our results showed that the interaction between these molecules and the NTC occurs via a physical adsorption with binding energies ranging from 0.22 to 1.91 eV [0.12 to 1.14 eV] for NTC interacting with biotin [cysteine]. For the carboxylated nanostructure higher binding energies are observed. In this way, carboxylated NTC aren’t interesting for interaction with the molecules, because the eventual removal of these NTC had a high energy cost. The physical adsorption between the NTC and the molecules of biotin and cysteine is of great interest for a possible experimental application of NTC as a biological sensor for these molecules. / As propriedades eletrônicas e estruturais das moléculas de biotina e cisteína interagindo com nanotubos de carbono puros, carboxilados e com defeito do tipo vacância foram estudadas fazendo-se uso de simulações computacionais baseadas na Teoria do Funcional da Densidade (DFT). Os nanotubos de carbono (NTC) vem sendo utilizados para uma série de aplicações. Dentre estas, podemos destacar sua utilização como sensores para moléculas biológicas. O objetivo deste trabalho foi utilizar NTC puros, carboxilados e com defeito interagindo com as moléculas de biotina e cisteína no desenvolvimento de nanosensores para estas moléculas. Os resultados mostraram que a interação entre essas moléculas e os NTC ocorre via uma adsorção física, pois não altera as propriedades dos nanotubos, tendo energias de ligação que variam de 0,22 a 1,91 eV para NTC interagindo com a biotina e 0,12 a 1,14 eV para NTC interagindo com a cisteína, sendo que as energias mais altas, são aquelas às quais as moléculas interagem com os NTC carboxilados. Logo, NTC carboxilados não são os mais indicados para a interação com as moléculas, pois a remoção posterior destas do NTC teria um alto custo energético. A adsorção física entre os NTC e as moléculas de biotina e cisteína é de grande interesse para uma possível aplicação experimental destes NTC como sensores biológicos para estas moléculas.
57

"De magistro" Tomáše Akvinského / "De magistro" by Thomas Aquinas

Adamovič, Tomáš January 2017 (has links)
Tomáš Adamovič "De magistro" Tomáše Akvinského "De magistro" by Thomas Aquinas Abstract The topic of the submitted Master Thesis is the "De magistro" question from the Disputed Questions on Truth by Thomas Aquinas. The aim of the work is to introduce basic thoughts of this text and present them in a broader context (compared to Plato, Augustine and heterodox Aristotelianisms). The herein applied methods include an analysis of the text, occasionally combined with compilation of Thomas Aquinas and comparison with the works of other authors. In the analysed text, Thomas Aquinas explains his concept of teaching, argues for the statements that a man can be called a teacher, that no one can be called a teacher of himself, that a man can be taught by an angel, and that teaching pertains more to the active life than to the contemplative life. The Thesis is supplemented with some questions of the present author. Keywords teacher, first principles, cognition, Thomas Aquinas, philosophy of education
58

Rational design of dielectric oxide materials through first-principles calculations and machine-learning technique / 第一原理計算と機械学習法による誘電体酸化物材料の合理的設計

Umeda, Yuji 23 January 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22159号 / 工博第4663号 / 新制||工||1727(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 田中 功, 教授 中村 裕之, 教授 邑瀬 邦明 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
59

Tuning the Transport Properties of Layered Materials for Thermoelectric Applications using First-Principles Calculations

Saeed, Yasir 11 May 2014 (has links)
Thermoelectric materials can convert waste heat into electric power and thus provide a way to reduce the dependence on fossil fuels. Our aim is to model the underlying materials properties and, in particular, the transport as controlled by electrons and lattice vibrations. The goal is to develop an understanding of the thermoelectric properties of selected materials at a fundamental level. The structural, electronic, optical, and phononic properties are studied in order to tune the transport, focusing on KxRhO2, NaxRhO2, PtSb2 and Bi2Se3. The investigations are based on density functional theory as implemented in the all electron linearized augmented plane wave plus local orbitals WIEN2k and pseudo potential Quantum-ESPRESSO codes. The thermoelectric properties are derived from Boltzmann transport theory under the constant relaxation time approximation, using the BoltzTraP code. We will discuss first the changes in the electronic band structure under variation of the cation concentration in layered KxRhO2 in the 2H phase and NaxRhO2 in the 3R phase. We will also study the hydrated phase. The deformations of the RhO6 octahedra turn out to govern the thermoelectric properties, where the high Seebeck coefficient results from ”pudding mold" bands. We investigate the thermoelectric properties of electron and hole doped PtSb2, which is not a layered material but shares “pudding mold" bands. PtSb2 has a high Seebeck coefficient at room temperature, which increases significantly under As alloying by bandgap opening and reduction of the lattice thermal conductivity. Bi2Se3 (bulk and thin film) has a larger bandgap then the well-known thermoelectric material Bi2Te3, which is important at high temperature. The structural stability, electronic structure, and transport properties of one to six quintuple layers of Bi2Se3 will be discussed. We also address the effect of strain on a single quintuple layer by phonon band structures. We will analyze the electronic and transport properties of Tl-doped Bi2Se3 under strain, focusing on the giant Rashba spin splitting (Tl doping breaks the inversion symmetry in Bi2Se3) and its dependence on biaxial tensile and compressive strain.
60

Novel Electromagnetic Responses in Topological Semimetals: Case Studies of Rare-Earth Monopnictides and RAlX Material Family

Yang, Hung-Yu January 2021 (has links)
Thesis advisor: Fazel Tafti / Since the idea of topology was realized in real materials, the hunt is on for new candidates of topological semimetals with novel electromagnetic responses. For example, topological states can be highly conductive due to a topological protection, which can be destroyed in a magnetic field and lead to an extremely high magnetoresistance. In Weyl semimetals, a transverse current that would usually require a magnetic field to emerge, can be generated by intrinsic Berry curvature without a magnetic field -- the celebrated anomalous Hall effect. In this dissertation, both phenomena mentioned above are studied in rare-earth monopnictides and RAlX material family (R=rare-earths, X=Ge/Si), respectively. The monopnictides are ideal for the study of extreme magnetoresistance because of their topological transitions and abundant magnetic phases. In LaAs, we untied the connection between topological states and the extreme magnetoresistance, the origin of which is clarified. In HoBi, we found an unusual onset of extreme magnetoresistance controlled by a magnetic phase dome. On the other hand, RAlX material family is a new class of Weyl semimetals breaking both inversion and time-reversal symmetries. In particular, in PrAlGeₓSi₁₋ₓ (x=0-1), we unveiled the first transition from intrinsic to extrinsic anomalous Hall effect in ferromagnetic Weyl semimetals, and the role of topology is discussed. In CeAlSi, we found that the Fermi level can be tuned as close as 1 meV away from the Weyl nodes; moreover, a novel anomalous Hall response appears only when the Fermi level is tuned to be near the Weyl nodes. Thus, we established a new transport response solely induced by Weyl nodes. / Thesis (PhD) — Boston College, 2021. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.

Page generated in 0.0411 seconds