• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 90
  • 30
  • 21
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 174
  • 174
  • 73
  • 71
  • 67
  • 36
  • 33
  • 25
  • 25
  • 24
  • 24
  • 23
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

A generic approach to the automated startup and shutdown of processing units using sequential function charts

Du Plessis, Lourens 08 July 2005 (has links)
Automated start–up and shutdown procedures increase the profitability and safety of a process, but are difficult to implement due to the complex nature of the concepts that must be incorporated. Generic components used specifically for the implementation of automated startup and shutdown procedures were defined to streamline the implementation process. The generic components developed are based on Sequential Function Charts and were applied to the startup of a fixed–bed gasification unit, for which a dynamic simulation model was developed. The application showed that the automated startup can be defined by a few generic components and that the flexibility of the startup procedure is increased through the incorporation of a fault accommodation module. The use of a visual–based definition of sequential processes increases the understanding of the complex scheduling procedures as well as the efficiency of the development of these automated procedures. In addition, iterative learning was incorporated into the generic definition to optimise controller performance during the non–linear phases of operation. / Dissertation (MEng (Control Engineering))--University of Pretoria, 2006. / Chemical Engineering / MEng / Unrestricted
132

Estudo da remoção de corantes em colunas de leito fixo utilizando como adsorventes quitosana e escama de peixe / Study of the removal of dyes in fixerd-bed column using chitosa and fish scale as adsorbents

Rocha, Allani Christine Monteiro Alves da 14 December 2011 (has links)
This study evaluated the use of the technique of adsorption in fixed-bed column using chitosan and fish scale to treat wastewater contaminated with dyes (Indigo Carmine (IC), Reactive Black 5 (RB05) and Reactive Orange 16 (RO16)). We tried to identify the interaction between the adsorbate and adsorbent and evaluate the influence of parameters: initial concentration of the dye in the effluent, bed height and flow rate in the maximum adsorption capacity. To achieve these objectives the adsorption studies were conducted in fixed bed in a glass column 9 cm and 0.6 cm in diameter. The concentration of dye in the effluent was monitored by measuring their absorbance alert of a UV-VIS spectrophotometer. The results of adsorption of the dyes on the chitosan and fish scales are presented in the form of breakthrough curves (C / Co vs. t). The adsorbed amount of each solid in the column, the balance was calculated. Starting of the curve data burst data were obtained from many different alert nonlinear models (Thomas, Model Adams-Bohart, Model Model Yan and Yoon-Nelson). Starting studies of fixed bed adsorption, is obsevou RO16 that the adsorption of the chitosan showed the highest amount adsorbed on average 30 mg g-1, the amounts found in HF and RB05 chitosan. As for the fish scale, the RB05 had the highest amount adsorbed on average 56 mg g-1, compared to IC and RO16. It was also observed that the model of Yan was suitable to represent the results obtained for the adsorption column so as to HF and RB05 RO16 in chitosan. No model was adequate to represent the results obtained for the adsorption column IC and RO16 in fish scales. Models Thomas and Adams-Bohart were the most suitable to represent the curve data burst in the adsorption RB05 fish scales. These results show that the parameters: initial concentration of dye in the effluent flow and the bed height influence the maximum quantity adsorbed and that the employed methods were adequate in view of the results obtained allow to make a clear and consistent evaluation, the performance of such adsorption technique for effluents contaminated with dyes. / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Neste trabalho foi avaliado o uso da técnica de adsorção em coluna de leito fixo utilizando quitosana e escama de peixe para tratar efluentes contaminados com corantes (Índigo Carmim (IC), Preto Reativo 5 (RB05) e Laranja Reativo 16 (RO16)). Buscou-se identificar a interação entre o adsorvente e o adsorvato e avaliar a influência dos parâmetros: concentração inicial do corante no efluente, altura do leito e vazão na capacidade máxima de adsorção. Para chegar a esses objetivos os estudos de adsorção em leito fixo foram conduzidos em uma coluna de vidro com 9 cm de altura e 0,6 cm de diâmetro. A concentração do corante no efluente foi monitorada medindo sua absorvância, atravez de um espectrofotômetro de UV-VIS. Os resultados de adsorção dos corantes sobre a quitosana e a escama de peixe são apresentados sob a forma de curvas de ruptura (C/Co versus t). A quantidade adsorvida de cada sólido na coluna, no equilibrio, foi calculada. Apartir dos dados da curva de ruptura foram obtidos dados atravez de vários modelos não linear (Modelo de Thomas, Modelo de Adams-Bohart, Modelo de Yan e o Modelo de Yoon-Nelson).Apartir dos estudos de adsorção de leito fixo, obsevou-se que a adsorção do RO16 pela quitosana apresentou a maior quantidade adsorvida, em média de 30 mg g-1, do que as quantidades encontradas para IC e RB05 em quitosana. Já para a escama de peixe, o RB05 apresentou a maior quantidade adsorvida, em média 56 mg g-1, se comparados a IC e RO16. Observou-se também que o modelo de Yan foi o mais adequado para representar os resultados obtidos para a adsorção em coluna tanto para IC quanto para RB05 e RO16 em quitosana. Nenhum modelo foi adequado para representar os resultados obtidos para adsorção em coluna do IC e RO16 em escama de peixe. Os modelos de Thomas e Adams-Bohart foram os mais adequados para representar os dados da curva de ruptura da adsorção do RB05 em escama de peixe. Esses resultados mostram que os parâmetros: concentração inicial do corante no efluente, altura do leito e vazão têm influência na quantidade máxima adsorvida e que os métodos empregados mostraram-se adequados, tendo em vista que os resultados obtidos permitiram fazer uma avaliação clara e consistente, do desempenho da adsorção como técnica de tratamento para efluentes contaminados com corantes.
133

Experimentální podpora vývoje specifického integrovaného zařízení / Experimental support for the development of specific integrated equipment

Hrbáček, Jiří January 2021 (has links)
Regenerative heat exchangers are used in a wide range of industries and in the technical equipment of buildings. These heat exchangers play an important role in saving thermal energy and removing volatile organic compounds from flue gases. The theoretical part of the work deals with the division of regenerative exchangers into rotary and switching exchangers and the possibilities of their use. These types of heat exchangers are used in many applications, e.g. as a heat exchanger using waste heat to preheat the process gas (regeneration layer), or as catalysts to accelerate the reaction required to remove volatile organic compounds (catalytic layer), or as integrated equipment where both the regeneration layer and the catalytic layer. The aim of the diploma thesis is experimental support in the development of a computer program for the design of a specific integrated device. The program allows the calculation of the regeneration and catalytic bed, or both beds simultaneously, i.e. integrated equipment. The diploma thesis deals with the support of a mathematical model for the calculation of the regeneration bed. Pressure loss and heat transfer play an important role in the selection and subsequent calculation of a suitable bed. To calculate them, it is possible to find more available computational relationships that differ significantly in their accuracy. It is therefore necessary to select the most suitable ones for the computational model. The practical part of the work then deals with research, analysis, and assessment of the suitability of methods used to calculate pressure losses based on a comparison with the values measured on experimental equipment. Subsequently, the work deals with computational methods for determining the heat transfer coefficient of the packed bed. A significant part of the practical part deals with the modification of the experimental equipment for the verification of computational relations for the determination of heat transfer with measured data.
134

CFD modelování hoření tuhých paliv na roštu / CFD modelling of grate combustion of solid fuels

Juřena, Tomáš January 2008 (has links)
Práce je zaměřena na vytvoření numerického modelu 1D experimentálního reaktoru pro spalování tuhých paliv. Metodou konečných objemů je provedena diskretizace řídících rovnic a takto formulovaná úloha je implementována do programu v prostředí MATLAB. V závěru jsou uvedeny výsledky několika simulací hoření slámy.
135

Verfahrenstechnische Untersuchungen zum Betriebsverhalten statischer Rottereaktoren

Weichelt, Kay 04 March 2020 (has links)
Statische Rottereaktoren sind mit ihrem Festbett das vorherrschende technologische Konzept zur biologischen Behandlung von Restabfall (MBA) und zur Bioabfallkompostierung. Auftretende prozesstechnische Probleme beim Reaktorbetrieb waren die Motivation zur vorliegenden Arbeit. Untersucht wurde das Betriebsverhalten am Beispiel von MBA-Anlagen. Die Bedingungen und Vorgänge wurden im Kontext von Stoffsystem und technischem System unter Anwendung verfahrenstechnischer Methoden analysiert. Für Großanlagen geeignete experimentelle Methoden wurden entwickelt und das Betriebsverhalten im Istzustand und im modifizierten Anlagenzustand beschrieben. Es wurden signifikante Beeinflussungen der Rottebedingungen durch Stoffsystem und Prozessführung unter Einwirkung der Technik deutlich. Die prozessrelevanten Einflussfaktoren sowie deren Ursachen und Wirkungen auf das Betriebsverhalten konnten analysiert und zahlreiche konzeptions- und konstruktionsbedingte Probleme statischer Rottereaktoren identifiziert werden. Als besonders problematisch zeigten sich stochastisch und systematisch auftretende Vorzugsströmungen aufgrund der Heterogenität des Haufwerks und undefinierte Bedingungen zur Belüftung aufgrund schwankender Druckbedingungen im Prozessluftsystem und gegenseitiger Beeinflussungen. Aus den Ergebnissen wurden Maßnahmen für einen verbesserten Betrieb bestehender Anlagen und Lösungen für zukünftige Anlagen abgeleitet / With their fixed bed, static reactors are the predominant technological concept for the biological treatment of residual waste (MBT) and for the composting of bio-waste. Process-based problems in the reactor operation were the motivation for the present work. The operating behavior was examined using the example of MBT plants. The conditions and processes were analyzed in the context of the material system and the technical system using process engineering methods. Experimental methods suitable for real plants were developed and the operating behavior in the current state and in the modified plant state was described. Significant influences on the rotting conditions by the material system and process management under the effect of technology became apparent. The process-relevant influencing factors and their causes and effects on the operating behavior could be analyzed and numerous concept- and construction-conditioned problems of static reactors could be identified. Stochastic and systematic preference flows due to the heterogeneity of the material in the reactor and undefined conditions for ventilation due to fluctuating pressure conditions in the process air system and mutual influences were particularly problematic. Technical measures for improved operating behavior of existing plants and solutions for future plants were derived from the results.
136

Rohstoffliche und verfahrenstechnische Einflussfaktoren der Pyrolyse biogener Rohstoffe

Reichel, Denise 18 May 2017 (has links)
Die vorliegende Arbeit beschäftigt sich mit rohstofflichen und verfahrenstechnischen Einflussfaktoren bei der Biomassepyrolyse. Ausgehend von der Entwicklung einer kleintechnischen Festbettpyrolyseapparatur, erfolgten experimentelle Untersuchungen an 26 biogenen Einsatzstoffen unter verschiedenen Prozessbedingungen. Die Apparatur erlaubt eine vollständige Bilanzierung und Gewinnung aller Produkte, zudem können Einflüsse durch sekundäre Reaktionen in der Gasphase minimiert werden. Die Einsatzstoffe, welche u. a. auch Zellstoff, Xylan und Alkali-Lignin einschließen, wurden hinsichtlich brennstofftechnischer und physikalischer Eigenschaften sowie der Stoffgruppenzusammensetzung charakterisiert. Sie repräsentieren eine große Bandbreite möglicher Zusammensetzungen. Bei den Prozessparametern wurde die Pyrolysetemperatur im Bereich von 200 bis 750 °C, die Aufheizrate zwischen 5 und 100 K/min, die Feststoffverweilzeit von 0 bis 30 min sowie die Partikelgröße (0 bis 5 mm) variiert. Aus den Untersuchungen zum Einfluss der Prozessparameter für die verschiedenen Einsatzstoffe wurden unter Anwendung einer geeigneten Bilanzierungsmethodik geschlossene Masse- und Elementbilanzen für jeden Versuchspunkt aufgestellt. Unter den Prozessvariablen konnte die Temperatur erwartungsgemäß als wichtigste Einflussgröße identifiziert werden. Der zweistufige Zersetzungsverlauf der Biomassen ermöglicht die mathematische Beschreibung der temperaturabhängigen Ausbeuten mittels der zweistufigen Boltzmann-Funktion für den gesamten Temperaturbereich mit hohen Bestimmtheitsmaßen. Die rohstofflichen Einflussgrößen wurden unter Anwendung der Rangkorrelationsmethode nach Spearman und der Produkt-Moment-Korrelation nach Pearson mit den definierten Zielgrößen (Ausbeuten, Produktzusammensetzung, Kokseigenschaften, Heizwerte, Energieeinbindung) bei verschiedenen Pyrolysetemperaturen korreliert. Neben der Stoffgruppenzusammensetzung konnten bei den rohstofflichen Einflussfaktoren die Gehalte an Alkalien sowie der Gesamtgehalt an potentiell katalytisch aktiven Bestandteilen (Na, K, Mg, Ca, Fe) als Haupteinflussgrößen identifiziert werden. Korrelationen ergeben sich auch für brennstofftechnische Eigenschaften, wobei neben dem Flüchtigen- und dem Aschegehalt, das O/C-Verhältnis signifikant ist. Die gefundenen statistischen Zusammenhänge können weitestgehend mechanistisch begründet werden. Zur Quantifizierung der ermittelten Zusammenhänge für die Zielgrößen wurden multiple Regressionsmodelle erstellt und anhand von Bestimmtheitsmaß, Informationskriterium und mittleren Modellfehlern bewertet. Somit konnten 42 Regressionsgleichungen für die Produktausbeuten bei verschiedenen Pyrolysetemperaturen entwickelt werden, die auf den Gehalten verschiedener Stoffgruppen und dem Gesamtgehalt an katalytisch aktiven Elementen basieren. Weitere 56 Regressionsgleichungen stehen für die Berechnung von Teer/Öl-Elementarzusammensetzung, Kokszusammensetzung, Teer/Öl-Heizwert sowie Energieeinbindung im Koks bei verschiedenen Pyrolysetemperaturen zur Verfügung. Die Prognoseeignung der Gleichungen wurde anhand eines weiteren Datensatzes für Apfeltrester überprüft. Für die Koks-, die Gas- und die Kondensatausbeute sowie die genannten Produkteigenschaften ergab sich eine gute Vorhersagequalität, die jedoch stark von der verwendeten Gleichung abhängt. Die Validierung mit Literaturdaten konnte aufgrund fehlender Datensätze, die sowohl die notwendigen Rohstoffparameter als auch Produktausbeuten und -eigenschaften enthalten, nur anhand der Koksausbeute erfolgen. Für verschiedene Biomassen und biogene Reststoffe führte dies zu einer guten Anpassung. Die mathematische Beschreibung der Ausbeuten und bestimmter Produkteigenschaften über Regressionsgleichungen auf Grundlage von Rohstoffparametern stellt einen vielversprechenden Ansatz für die Vorhersage der maximalen Ausbeuten bei bestimmten Bedingungen dar. Dies ermöglicht eine Abschätzung zur Einsatzeignung von Biomassen bzw. biogenen Reststoffen für verschiedene Anwendungszwecke. Bisher existiert kein derartiges Modell zur Vorhersage der definierten Zielgrößen. Grundsätzlich wäre die Entwicklung einfacher Gleichungen mit wenigen, einfach bestimmbaren und standardisierten Parametern erstrebenswert. Die Ergebnisse haben jedoch gezeigt, dass Ein-Variablen-Modelle die Trends zwischen den Biomassen aufgrund der komplexen Zusammenhänge zwischen Pyrolyseverhalten und Rohstoffparametern häufig nicht richtig wiedergeben können. Für robuste Modelle sind somit mindestens zwei unabhängige Modellparameter mit idealerweise gegensätzlichem Einfluss notwendig.:Abkürzungs- und Symbolverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x Abbildungsverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii Tabellenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii 1 Einleitung und Zielstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Kenntnisstand . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 Zusammensetzung und Struktur von Lignocellulosen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Allgemeine chemische Zusammensetzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.2 Struktureller Aufbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.3 Vorkommen und Einbindungsformen von anorganischen Bestandteilen . . . . . . . . . . . . . . . . . . . 14 2.2 Möglichkeiten zur Untersuchung der Pyrolyse von Biomassen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 Untersuchungsmethoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Verwendete Reaktoren zur Untersuchung der Biomassepyrolyse . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Reaktionsabläufe bei der Biomassepyrolyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Einflussfaktoren auf Pyrolyseproduktverteilung und -eigenschaften . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.1 Einfluss rohstofflicher Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.2 Einfluss verfahrenstechnischer Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.5 Beschreibung und Vorhersage des Pyrolyseverhaltens von Biomasse . . . . . . . . . . . . . . . . . . . . . 39 2.5.1 Empirische Modelle basierend auf statistischen Methoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.5.2 Kinetische Modelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.5.3 Modelle auf Basis der Stoffgruppenzusammensetzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.5.4 Netzwerkpyrolysemodelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.6 Schlussfolgerungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3 Untersuchungsmethodik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1 Einsatzmaterialien und deren Charakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.1 Biomassen und Vorbehandlung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.2 Charakterisierungsmethoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2 Entwicklung einer apparativen Einrichtung zur Bilanzierung des Biomassepyrolyseprozesses . . . 55 3.2.1 Anforderungen und Zielstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2.2 Konzeption, Dimensionierung und Optimierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.2.3 Endgültige Konfiguration der Laborpyrolyseanlage (LPA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.3 Durchführung der Bilanzversuche an der LPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 3.3.1 Parametervariationen bei der Festbettpyrolyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.2 Versuchsvorbereitung und -durchführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.3 Produktrückgewinnung und -aufarbeitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.4 Methodik bei der Bilanzierung des Pyrolyseprozesses im Festbettreaktor . . . . . . . . . . . . . . . . . . 69 3.4.1 Bilanzgleichungen und -annahmen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4.2 Fehlerabschätzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4 Ergebnisse zur Charakterisierung der Einsatzmaterialien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.1 Brennstofftechnische Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2 Chemisch-strukturelle Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3 Physikalische Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 5 Einfluss verfahrenstechnischer und rohstofflicher Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1 Bilanzfehler und Wiederholbarkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1.1 Vergleich der Bilanzierungsvarianten und Bilanzfehler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1.2 Wiederholbarkeit der Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.2 Einfluss verfahrenstechnischer Parameter auf Produktverteilung und -zusammensetzung . . . . 94 5.2.1 Einfluss radialer Temperaturgradienten in der Biomasseschüttung . . . . . . . . . . . . . . . . . . . . . 94 5.2.2 Pyrolysetemperatur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.2.3 Empirische Gleichungen für die Temperaturabhängigkeit der Produktausbeuten . . . . . . . . . 103 5.2.4 Aufheizgeschwindigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.2.5 Feststoffverweilzeit bei Pyrolyseendtemperatur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.3 Einfluss rohstofflicher Parameter auf Produktverteilung und -zusammensetzung . . . . . . . . . . . 111 5.3.1 Partikelgröße . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.3.2 Pyrolyse von Zellstoff, Xylan und Alkali-Lignin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.4 Kombinierte Betrachtungen zum Temperatur- und Rohstoffeinfluss . . . . . . . . . . . . . . . . . . . . . 120 6 Mathematische Zusammenhänge zwischen Rohstoffeigenschaften und Pyrolyseverhalten . . . . 133 6.1 Korrelation mit Rohstoffeigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.1.1 Produktausbeuten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.1.2 Produkteigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.1.3 Schlussfolgerungen zur Korrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 6.2 Regressionsanalyse und Multiple Regression zur Beschreibung des Pyrolyseverhaltens . . . . . 155 6.2.1 Modellvergleich am Beispiel der Koksausbeute bei 500 °C . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.2.2 Gleichungen zur Berechnung der Produktausbeuten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 6.2.3 Gleichungen zur Berechnung der Produkteigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 6.2.4 Schlussfolgerungen zur Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 7 Vorhersagemöglichkeiten für das Pyrolyseverhalten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.1 Validierung der Modellgleichungen mit internem Datensatz . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.2 Validierung mit Literaturdaten zur Festbettpyrolyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 8 Zusammenfassung und Ausblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181 Literatur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187 Anhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 A Weiterführende Informationen zu Kapitel 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 B Weiterführende Informationen zur Untersuchungsmethodik . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211 C Ergebnisse zur Einsatzstoffcharakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 D Ergebnisse zum Einfluss verfahrenstechnischer und rohstofflicher Parameter . . . . . . . . . . . . . . . 272 E Ergebnisse zur Korrelation des Pyrolyseverhaltens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314 F Ergebnisse zur Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348 G Ergebnisse zur Vorhersage des Pyrolyseverhaltens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361 / The intention of this work was an intensive study of the influence of feedstock properties and process variables on biomass pyrolysis. Due to a lack in consistent data sets, including various feedstock parameters as well as product yields, compositions, and further properties, a laboratory fixed bed reactor was developed to overcome this problem. The pyrolysis reactor was used for experiments with 26 biogenous feedstock under variable process conditions. The reactor is suitable to assure nearly closed mass balances and a complete product recovery. Furthermore, it allows the minimization of secondary reactions. The used feedstock, which include cellulose, xylan, and lignin amongst others, represent a broad range of possible compositions and were intensively characterized by determination of fuel and physical properties as well as biopolymer composition. The varied process parameters are: temperature between 200 and 700 °C, heating rate in the range of 5 to 100 K/min, solid residence time from 0 to 30 min, and particle size up to 5 mm. Closed mass and element balances were done for every set of parameters. As expected, amongst process variables the temperature was identified as the main factor influencing biomass pyrolysis. The temperature depending products yields could be fitted well by the double boltzmann approach due to the two-stage pyrolytic decomposition of biomass. Correlation of feedstock properties with different target parameters, including yields, product composition, heating values, remaining energy content in char, and char properties, was done by Spearman´s rank correlation and Pearson´s correlation for different temperatures. Biopolymer composition as well as alkaline content and total content of potential catalytic elements (Na, K, Ca, Mg, Fe) were identified as main factors influencing biomass pyrolysis product yields and compositions. Further correlations arise with fuel properties like volatile matter and ash content besides O/C atomic ratio. The obtained correlations can be mainly related to pyrolysis mechanisms. The received relationships were quantified by means of multiple regression models. Model evaluation was done by coefficient of determination, information criteria and mean squared errors. 42 regression models, based on different biopolymer contents and the total content of catalytic elements, were provided for the mathematical description of product yields for different process temperatures. Another 56 equations are suitable for the calculation of product properties like tar/oil and char composition, tar/oil heating value, and remaining energy content in the char at different temperatures. The predictability of the regression models was proved using another data set for apple pomace. The yields of char, gas, and condensate as well as the aforementioned product properties can be predicted very well, although, the predictability varies with the applied equation. Validation of the models by literature data was only possible for the char yield, because of the mentioned lack in suitable and complete data sets. Application of regression model to fixed bed char yields for different biomass and biogenous residues from literature resulted in a good predictability. Mathematical description of pyrolysis product yields and properties by means of regression models based on feedstock parameters is a promising approach to predict maximum yields at defined conditions and, therefore, to make an estimation of suitability of the biomass to different applications. Up to now such models do not exist. In general, the development of simple equations based on a few standardized parameters which are easy to determine is worthwhile. Hence, the results showed that the overall trend between different biomass feeds was often not predicted correctly using one-parameter models. This is due to the complex relationships between pyrolysis behavior and feedstock properties. Consequently, at least two parameter models, where the variables show the opposite trends, were most appropriate.:Abkürzungs- und Symbolverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x Abbildungsverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii Tabellenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii 1 Einleitung und Zielstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Kenntnisstand . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 Zusammensetzung und Struktur von Lignocellulosen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Allgemeine chemische Zusammensetzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.2 Struktureller Aufbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.3 Vorkommen und Einbindungsformen von anorganischen Bestandteilen . . . . . . . . . . . . . . . . . . . 14 2.2 Möglichkeiten zur Untersuchung der Pyrolyse von Biomassen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 Untersuchungsmethoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Verwendete Reaktoren zur Untersuchung der Biomassepyrolyse . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Reaktionsabläufe bei der Biomassepyrolyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Einflussfaktoren auf Pyrolyseproduktverteilung und -eigenschaften . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.1 Einfluss rohstofflicher Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.2 Einfluss verfahrenstechnischer Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.5 Beschreibung und Vorhersage des Pyrolyseverhaltens von Biomasse . . . . . . . . . . . . . . . . . . . . . 39 2.5.1 Empirische Modelle basierend auf statistischen Methoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.5.2 Kinetische Modelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.5.3 Modelle auf Basis der Stoffgruppenzusammensetzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.5.4 Netzwerkpyrolysemodelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.6 Schlussfolgerungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3 Untersuchungsmethodik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1 Einsatzmaterialien und deren Charakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.1 Biomassen und Vorbehandlung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.2 Charakterisierungsmethoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2 Entwicklung einer apparativen Einrichtung zur Bilanzierung des Biomassepyrolyseprozesses . . . 55 3.2.1 Anforderungen und Zielstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2.2 Konzeption, Dimensionierung und Optimierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.2.3 Endgültige Konfiguration der Laborpyrolyseanlage (LPA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.3 Durchführung der Bilanzversuche an der LPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 3.3.1 Parametervariationen bei der Festbettpyrolyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.2 Versuchsvorbereitung und -durchführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.3 Produktrückgewinnung und -aufarbeitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.4 Methodik bei der Bilanzierung des Pyrolyseprozesses im Festbettreaktor . . . . . . . . . . . . . . . . . . 69 3.4.1 Bilanzgleichungen und -annahmen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4.2 Fehlerabschätzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4 Ergebnisse zur Charakterisierung der Einsatzmaterialien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.1 Brennstofftechnische Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2 Chemisch-strukturelle Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3 Physikalische Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 5 Einfluss verfahrenstechnischer und rohstofflicher Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1 Bilanzfehler und Wiederholbarkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1.1 Vergleich der Bilanzierungsvarianten und Bilanzfehler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1.2 Wiederholbarkeit der Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.2 Einfluss verfahrenstechnischer Parameter auf Produktverteilung und -zusammensetzung . . . . 94 5.2.1 Einfluss radialer Temperaturgradienten in der Biomasseschüttung . . . . . . . . . . . . . . . . . . . . . 94 5.2.2 Pyrolysetemperatur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.2.3 Empirische Gleichungen für die Temperaturabhängigkeit der Produktausbeuten . . . . . . . . . 103 5.2.4 Aufheizgeschwindigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.2.5 Feststoffverweilzeit bei Pyrolyseendtemperatur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.3 Einfluss rohstofflicher Parameter auf Produktverteilung und -zusammensetzung . . . . . . . . . . . 111 5.3.1 Partikelgröße . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.3.2 Pyrolyse von Zellstoff, Xylan und Alkali-Lignin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.4 Kombinierte Betrachtungen zum Temperatur- und Rohstoffeinfluss . . . . . . . . . . . . . . . . . . . . . 120 6 Mathematische Zusammenhänge zwischen Rohstoffeigenschaften und Pyrolyseverhalten . . . . 133 6.1 Korrelation mit Rohstoffeigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.1.1 Produktausbeuten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.1.2 Produkteigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.1.3 Schlussfolgerungen zur Korrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 6.2 Regressionsanalyse und Multiple Regression zur Beschreibung des Pyrolyseverhaltens . . . . . 155 6.2.1 Modellvergleich am Beispiel der Koksausbeute bei 500 °C . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.2.2 Gleichungen zur Berechnung der Produktausbeuten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 6.2.3 Gleichungen zur Berechnung der Produkteigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 6.2.4 Schlussfolgerungen zur Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 7 Vorhersagemöglichkeiten für das Pyrolyseverhalten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.1 Validierung der Modellgleichungen mit internem Datensatz . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.2 Validierung mit Literaturdaten zur Festbettpyrolyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 8 Zusammenfassung und Ausblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181 Literatur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187 Anhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 A Weiterführende Informationen zu Kapitel 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 B Weiterführende Informationen zur Untersuchungsmethodik . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211 C Ergebnisse zur Einsatzstoffcharakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 D Ergebnisse zum Einfluss verfahrenstechnischer und rohstofflicher Parameter . . . . . . . . . . . . . . . 272 E Ergebnisse zur Korrelation des Pyrolyseverhaltens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314 F Ergebnisse zur Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348 G Ergebnisse zur Vorhersage des Pyrolyseverhaltens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361
137

Adsorption of Pharmaceuticals and Endocrine Disrupting Compounds using Unmodified and Surfactant Modified Palygorskite-Montmorillonite Clay Particles in Batch and Fixed Bed Column Modes

Tetteh, Emmanuel 04 December 2018 (has links)
No description available.
138

Modelling of Biomass Pyrolysis with Ex-situ Catalytic Upgrading for Bio-crude Production

Nugrahany, Febryana January 2018 (has links)
This study presents a techno-economic assessment of slow pyrolysis of pine sawdust continued by ex-situ catalytic upgrading. The overall process consists of six sections: feed drying, pyrolysis, vapor filtration, ex-situ catalytic upgrading, vapor quenching, and combustion of permanent gas. In the process simulation, biomass is objected to slow pyrolysis at 450ºC in an electrically-heated screw reactor and pyrolysis vapors is upgraded in fixed catalytic bed reactor at 425 ºC (using HZSM-5). The model is then used to investigate effects of feed moisture variation and type of heating source in pyrolysis unit, i.e. thermal vs. electrical heating, to oil energy efficiency. According to the simulation model, the endothermic pyrolysis step requires1.46 MJ/kg dry-feed. On the other hand, ex-situ upgrading is slightly exothermic and releases50kJ/kg dry-feed. Overall, the conversion of biomass to bio-oil demonstrates a mass efficiency of 19.65%wt and an energy efficiency of 29.10%. The energy efficiency raises to 32.81% if a direct thermal source is applied instead of electrical heating. The bio-oil energy efficiency increases by 1.38% if the moisture content of the biomass decreases by 10%wt. In average,bio-oil and char production in ex-situ catalytic upgrading generate profit 1.47 SEK/kg dry feed. The uncertainty of bio-oil price causes the highest profit variation.
139

Enhancing the adsorption capacity of copper in aqueous solution by citric acid modified sugarcane bagasse

Pham, Thi Thu, Dinh, Thanh Hoa, Nguyen, Manh Kha, Van der Brugge, Bart 07 January 2019 (has links)
This study investigated the chemical modification method by citric acid and its enhancement effect on the adsorption capacity of sugarcane bagasse (SB) for copper removal from aqueous solution. Characterization studies were performed by using Fourier transform infra red (FTIR), which showed the introduction of carboxylic group in the structure the modified sugarcane bagasse (MSB). Batch study revealed the influence of pH, time, initial concentration of metal ion on adsorption capacity. The data showed an extremely good fit to Langmuir isotherm model from which the maximum adsorption capacity estimated reached 28.17 mg/g at optimum pH 5.5. Fixed bed column study using the adsorbent MSB confirmed that the breakthrough curves of the adsorption processes were dependent on bed height, initial concentration and flow rate. Linear regression analysis of the data demonstrated that Yoon-Nelson kinetic models were appropriate to explain the breakthrough curves. / Nghiên cứu đã thực hiện biến tính hóa học vật liệu bã mía bằng acid citric và đánh giá khả năng hấp phụ ion Cu(II) trong nước của bã mía (SB) trước và sau biến tính axit citric. Khảo sát cấu trúc vật liệu thông qua phổ hồng ngoại FTIR cho thấy các nhóm chức carboxylic có khả năng hấp phụ kim loại xuất hiện trong vật liệu biến tính. Thí nghiệm mẻ đánh giá sự ảnh hưởng của pH, thời gian và nồng độ của vật liệu tự nhiên và biến tính đến khả năng hấp phụ ion Cu(II). Kết quả của thí nghiệm mẻ phù hợp với mô hình Langmuir với khả năng hấp phụ cực đại đạt 28,17 mg/g tại nồng độ pH tối ưu là 5,5. Kết quả thí nghiệm trên mô hình cột cho thấy đường cong thoát của quá trình hấp phụ của vật liệu biến tính và chưa biến tính phụ thuộc và chiều cao lớp vật liệu, nồng độ ion Cu(II) ban đầu và vận tốc dòng chảy qua cột. Các dữ liệu thu nhận được từ thực nghiệm phù hợp với mô hình động học Yoon-Nelson.
140

Simultaneous Fixed Bed Removal of Nitrogen Oxides and Mercury Using Manganese and Cerium Mixed Metal Oxide Catalysts at Low Temperature SCR

Patil, Aniket January 2018 (has links)
No description available.

Page generated in 0.049 seconds