• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 9
  • 9
  • 9
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A State-based Approach for Modeling General Aviation Fixed-wing Accidents

Neelakshi Majumdar (5930741) 16 January 2019 (has links)
<p>General Aviation (GA) is a category of aircraft operations, exclusive of all military and commercial operations. According to Federal Aviation Administration (FAA), fixed-wing aircraft (also known as airplanes) account for 76.2% of all the estimated registered GA fleet in the United States. Out of all the GA accidents that the National Transportation Safety Board (NTSB) investigated in 2017, 87.7% of the accidents involved fixed-wing aircraft. The NTSB reports on all GA accidents and records the accident details in their database. The NTSB database has an abundance of accident data, but the data is not always logically complete and has missing information. Many researchers have conducted several studies to provide GA fixed-wing accident causation using the NTSB accident data. The quantitative analyses conducted by the researchers focused on a chain of events approach and identified the most frequent events in accidents. However, these studies provided little insight into why the events in the accidents happened. In contrast, the qualitative analyses conducted an in-depth study of limited accidents from the NTSB database. This approach helps in providing new findings but is difficult to apply to large scale datasets. Therefore, our understanding of GA fixed-wing accident causation is limited. This research uses a state-based approach, developed by Rao (2016), to provide a potentially better understanding of causes for GA fixed-wing accidents. I analyzed 10,500 fixed-wing accidents in 1982–2017 that involved inflight loss of control (LOC-I) using the state-based approach. I investigated the causes of LOC-I using both a conventional approach and a state-based approach. I analyzed fatal, non-fatal and overall LOC-I accidents in three timeframes: 1989–1998, 1999–2008 and 2008–2017. This multi-year analysis helped in discerning changes in the causation trends in the last three decades. A mapping of the LOC-I state definition to the NTSB codes helped in identifying 2350 more accidents in the database that were not discernible using the conventional approach. The conventional analysis revealed “directional control not maintained” as the top cause for the LOC-I accidents, which provides little information about how loss of control happened in accidents. The state-based analysis highlighted some important findings that contribute to LOC-I accidents that were not discernible using the conventional approach. The state-based analysis identified preflight mechanical issue as one of the new causes for LOC-I with a presence in 5.1% of LOC-I accidents in 2009–2017. It also helped in inferring some of the missing information in the accident data by modeling the accidents in a logical order. Using the logic rules in the state-based approach, I inferred that the pilot’s tendency to hit objects or terrain caused loss of control in 19.9% of LOC-I accidents in 2009–2017. Further, the logic rules helped in inferring that 7.5% of LOC-I accidents in 2009–2017 involved hazardous condition of an aircraft before the start of flight. A comparison of the findings from state-based approach with the GAJSC (General Aviation Joint Steering Committee) safety enhancements revealed that the state-based approach encompassed all the potential issues addressed in the safety enhancements. Additionally, a state-based analyses of larger datasets of fatal and non-fatal accidents suggested some new potential issues (such as improper maintenance) that were not explicitly addressed in the GAJSC safety enhancements. </p>
2

Meta aircraft flight dynamics and controls

Montalvo, Carlos 22 May 2014 (has links)
The field of mobile robotic systems has become a rich area of research and design. These systems can navigate difficult terrain using multiple actuators with conventional ambulation, by hopping, jumping, or for aerial vehicles, using flapping wings, propellers, or engines to maintain aerial flight. Unmanned Aerial Systems(UAS) have been used extensively in both military and civilian applications such as reconnaissance or search and rescue missions. For air vehicles, range and endurance is a crucial design parameter as it governs which missions can be performed by a particular vehicle. In addition, when considering the presence of external disturbances such as atmospheric winds, these missions can be even more challenging. Meta aircraft technologies is one area of research that can increase range and endurance by taking advantage of an increase in L/D. A meta aircraft is an aircraft composed of smaller individual aircraft connected together through a similar connection mechanism that can potentially transfer power, loads, or information. This dissertation examines meta aircraft flight dynamics and controls for a variety of different configurations. First, the dynamics of meta aircraft systems are explored with a focus on the changes in fundamental aircraft modes and flexible modes of the system. Specifically, when aircraft are connected, the fundamental modes change, can become overdamped or even unstable. In addition, connected aircraft exhibit complex flexible modes and mode shapes that change based on the parameters of the connection joint and the number of connected aircraft. Second, the connection dynamics are explored for meta aircraft where the vehicles are connected wing tip to wing tip using passive magnets with a particular focus on modeling the connection event between aircraft in a practical environment. It is found that a multi-stage connection control law with position and velocity feedback from GPS and connection point image feedback from a camera yields adequate connection performance in the presence of realistic sensor errors and atmospheric winds. Furthermore, atmosphericwinds with low frequency gusts at the intensity normally found in a realistic environment pose the most significant threat to the success of connection. The frequency content of the atmospheric disturbance is an important variable to determine success of connection. Finally, the geometry of magnets that create the connection force field can alter connection rates. Finally, the performance of a generic meta aircraft system are explored. Using a simplified rigid body model to approximate any meta aircraft configuration, adequate connection is achieved in the presence of realistic winds. Using this controller overall performance is studied. In winds, there is an overall decrease in outer loop performance for meta aircraft. However, inner loop performance increases for meta aircraft. In addition, the aerodynamic benefit of different configurations are investigated. Wing to wing tip connected flight provides the most benefit in terms of average increased Lift to Drag ratio while tip to tail configurations drop the Lift to Drag ratio as trailing aircraft fly in the downwash of the leading aircraft.
3

Automatic Takeoff and Landing of Unmanned Fixed Wing Aircrafts : A Systems Engineering Approach

Magnus, Vestergren January 2016 (has links)
The purpose of this thesis is to extend an existing autopilot with automatic takeoff and landing algorithms for small fixed wing unmanned aircrafts. The work has been done from a systems engineering perspective and as for solution candidates this thesis has a bias towards solutions utilizing fuzzy logic. The coveted promises of fuzzy logic was primarily the idea to have a design that was easily tunable with very little knowledge beyond flight experience for a particular aircraft. The systems engineering perspective provided a way to structure and reason about the project where the problem has been decoupled from different solutions and the work has been divided in a way that would allow multiple aspects of the project to be pursued simultaneously. Though the fuzzy logic controllers delivered functional solutions the promises related to ease of tuning was not fulfilled in a landing context. This might have been a consequence of the designs attempted but in the end a simpler solution outperformed the implemented fuzzy logic controllers. Takeoff did not present the same issues in tuning but did require some special care to handle the initial low airspeeds in an hand launch.
4

Fixed-wing Classification through Visually Perceived Motion Extraction with Time Frequency Analysis

Chaudhry, Haseeb 19 January 2022 (has links)
The influx of unmanned aerial systems over the last decade has increased need for airspace awareness. Monitoring solutions such as drone detection, tracking, and classification become increasingly important to maintain compliance for regulatory and security purposes, as well as for recognizing aircraft that may not be so. Vision systems offer significant size, weight, power, and cost (SWaP-C) advantages, which motivates exploration of algorithms to further aid with monitoring performance. A method to classify aircraft using vision systems to measure their motion characteristics is explored. It builds on the assumption that at least continuous visual detection or at most visual tracking of an object of interest is already accomplished. Monocular vision is in part limited by range/scale ambiguity, where range and scale information of an object projected onto the image plane of a camera using a pin- hole model is generally lost. In an indirect effort to attempt to recover scale information via identity, classification of aircraft can aid in improvement of. These measured motion characteristics can then be used to classify the perceived object based on its unique motion profile over time, using signal classification techniques. The study is not limited to just unmanned aircraft, but includes full scale aircraft in the simulated dataset used to provide a representative set of aircraft scale and motion. / Doctor of Philosophy / The influx of small drones over the last decade has increased need for airspace awareness to ensure they do not become a nuisance when operated by unqualified or ill-intentioned personnel. Monitoring airspace around locations where drone usage would be unwanted or a security issue is increasingly necessary, especially for more range and endurance capable fixed wing (airplane) drones. This work presents a solution utilizing a single camera to address the classification part of fixed wing drone monitoring, as cameras are extremely common, generally cheap, information rich sensors. Once an aircraft of interest is detected, classifying it can provide additional information regarding its intentions. It can also help improve visual detection and tracking performance since classification can help change expectations of where and how the aircraft may continue to travel. Most existing visual classification works rely on features visible on the aircraft itself or its silhouette shape. This work discusses an approach to classification by characterizing visually perceived motion of an aircraft as it flies through the air. The study is not limited to just drones, but includes full scale aircraft in the simulated dataset used. Video of an airplane is used to extract motion from each frame. This motion is condensed to and expressed as a single time signal, that is then classified using a neural network trained to recognize audio samples using a time-frequency representation called a spectrogram. This transfer learning approach with Resnet based spectrogram classification is able to achieve 90.9% precision on the simulated test set used.
5

Aerodynamic Modeling in Nonlinear Regions, including Stall Spins, for Fixed-Wing Unmanned Aircraft from Experimental Flight Data

Gresham, James Louis 28 June 2022 (has links)
With the proliferation of unmanned aircraft designed for national security and commercial purposes, opportunities exist to create high-fidelity aerodynamic models with flight test techniques developed specifically for remotely piloted aircraft. Then, highly maneuverable unmanned aircraft can be employed to their greatest potential in a safe manner using advanced control laws. In this dissertation, novel techniques are used to identify nonlinear, coupled, aerodynamic models for fixed-wing, unmanned aircraft from flight test data alone. Included are quasi-steady and unsteady nominal flight models, aero-propulsive models, and spinning flight models. A novel flight test technique for unmanned aircraft, excitation with remote uncorrelated pilot inputs, is developed for use in nominal and nonlinear flight regimes. Orthogonal phase-optimized multisine excitation signals are also used as inputs while collecting gliding, aero-propulsive, and spinning flight data. A novel vector decomposition of explanatory variables leads to an elegant model structure for stall spin flight data analysis and spin aerodynamic modeling. Results for each model developed show good agreement between model predictions and validation flight data. Two novel applications of aerodynamic modeling are discussed including energy-based nonlinear directional control and a spin flight path control law for use as a flight termination system. Experimental and simulation results from these applications demonstrate the utility of high-fidelity models developed from flight data. / Doctor of Philosophy / This dissertation presents flight test experiments conducted using a small remotely controlled airplane to determine mathematical equations and parameter values, called models, to describe the airplane's motion. Then, the models are applied to control the path of the airplane. The process to develop the models and predict an airplane's motion using flight data is described. New techniques are presented for data collection and analysis for unusual flight conditions, including a spinning descent. Results show the techniques can predict the airplane's motion very well. Two experiments are presented demonstrating new applications and the usefulness of the mathematical models.
6

Vers une stratégie unifiée pour la commande des véhicules aériens / Towards a unified approach for the control of aerial vehicles

Pucci, Daniele 11 April 2013 (has links)
Au cours du siècle dernier, la communauté scientifique a traité le contrôle des véhicules aériens principalement par l'élaboration de stratégies ad hoc, mais aucune approche unifiée n'a été développé jusqu'à présent. Cette thèse participe à l'élaboration d'une approche unifiée pour le contrôle des véhicules aériens en prenant en compte les forces aérodynamiques dans la conception de la commande. Nous supposons les effets aérodynamiques de rotation et les effets non stationnaires négligeables. Les actionneurs du véhicule sont supposés être composés d'une force de poussé fixée au corps pour le mouvement en translation, et d'un couple de contrôle pour la régulation d'attitude. Cette thèse se concentre ensuite sur la boucle de guidage, traitant du contrôle de la vitesse linéaire. L'un des principaux objectifs a été de déterminer la façon de réguler la force de poussée et l'orientation du véhicule pour compenser les forces extérieures. Tout d'abord nous abordons la modélisation, l'analyse et le contrôle de la dynamique longitudinale de l'avion. Ensuite nous étendons certaines de ces études aux mouvements tridimensionnels d'avions au corps symétrique, tels que les missiles. Un résultat original de cette thèse est de préciser les conditions sur la force aérodynamique permettant de reformuler le problème du contrôle dans celui de la commande d'un corps sphérique, pour lequel des résultats de stabilité peuvent être démontrés. Les lois de commande proposées intègrent des termes intégraux et anti-wind up sans reposer sur une politique de commutation entre plusieurs lois de commande. / Over the last century, the scientific community has dealt with the control of flying machines by mainly developing different strategies in relation to different classes of aircraft, and no unified control approach has been developed so far. The present thesis contributes towards the development of a unified control approach for aerial vehicles by maintaining aerodynamic forces in the control design. It is assumed, however, that the aerodynamic effects of rotational and unsteady motions are negligible, and that the means of actuation for an aerial vehicle consist of a body-fixed thrust force for translational motion and a control torque for attitude monitoring. This thesis then focuses on the guidance loop of the control problem. One of the main objectives has been to determine how to regulate the thrust intensity and the vehicle orientation to compensate for the orientation-dependent external forces. In particular, the modeling, analysis, and control of the longitudinal aircraft dynamics is first addressed. Then, some of these studies are extended to three-dimensional motions of symmetric aircraft, such as missile-like bodies. An original outcome of this thesis is to state conditions on the aerodynamic force that allow the control problem to be recasted into that of controlling a spherical body. In this case, strong stability results can be shown. The proposed control laws incorporate integral and anti-wind up terms and do not rely on a switching policy between several control laws.
7

Design, modeling and control of a convertible mini airplane having four tiliting rotors / Conception, modélisation et commande d'un drone convertible à quatre hélices pivotantes

Flores Colunga, Gerardo Ramón 31 October 2014 (has links)
Cette thèse étudie certains problèmes plus importants dans le sens de guidage, navigation et contrôle présentés dans une catégorie particulière de mini véhicules aériens (MVA) : le MVA convertible avec des ailes fixes et disques pendulaires. Cet aéronef est capable de changer sa configuration de vol, du vol stationnaire au vol palier et vice versa, au moyen d’une manœuvre de transition. Motivé par des applications civiles, on étudie théoriquement et expérimentalement les principes de contrôle en fonction de Lyapunov pour les dynamiques présentées dans le MVA convertible. Des résultats de convergence asymptotique sont obtenus sur l’enveloppe de vol complet du véhicule : d’un vol vertical à basse vitesse à un vol vers l’avant à grande vitesse. Cette thèse est divisée en quatre parties principales : l’étude de 1) les aéronefs à voilure fixe ; 2) le quadrirotor (avion équipe de quatre moteurs) ; 3) l’aéronef convertible ; 4) les applications de vision en utilisant l’aéronef convertible. Dans la première partie, un principe de contrôle en fonction de Lyapunov est développé pour diriger un mini véhicule aérien à voilure fixe tout au long d’un chemin d’accès souhaité. En outre, un générateur de chemin d’accès est proposé. Le résultant de la stratégie du contrôle donne une convergence globale du chemin actuel du MVA au chemin d’accès souhaité. Dans la deuxième partie, un contrôle en fonction de Lyapunov à l’aide de la théorie de la perturbation du singulier est proposé et appliqué sur la dynamique du MVA. En effet, dans cette partie on a abordé le problème diagnostic et la détection de pannes fault detection and diagnosis (FDD) pour un quadrirotor. Dans la troisième partie une nouvelle stratégie de contrôle pour effectuer la transition d’un avion convertible entre le mode avion et le mode hélicoptère, et vice versa, est présenté. L’analyse est effectuée pour le modèle longitudinal du PVHAT (Planar Vertical Helicopter-Airplane Transition) aéronef, lequel est un avion ayant disques pendulaires afin de réaliser la manœuvre de transition. L’algorithme de contrôle de boucle fermée qui en résulte, est prouvé être globalement asymptotiquement stable. Finalement, dans la quatrième partie de cette thèse, le problème de l’estimation et suivi d’un chemin à l’aide de vision système embarqué dans l’avion PVHAT est résolu. La stabilité globale exponentielle de la position sous-système ainsi que le contrôleur de commutation est démontrée. Des simulations illustratives et résultats expérimentaux sont obtenus sur plusieurs plateformes expérimentales développées dans cette thèse, pour évaluer l’applicabilité des principes contrôle proposés et mettre en valeur les mérites de l’approche. / This thesis studies some of the most relevant problems in the sense of guidance,navigation and control presented in a particular class of mini aerial vehicles (MAV) : the convertible MAV with fixed wings and tilting rotors. This aircraft is able to change its flight configuration from hover to level flight and vice-versaby means of a transition maneuver. Motivated by civilian applications, we theoretically and experimentally study Lyapunov-based control laws for dynamics presented in the convertible MAV. Results of asymptotic convergence are obtained over the complete flight envelope of the vehicle : from low-speed vertical flight through high-speed forward flight. We have divided this thesis in four main parts : the study of 1) the fixed-wingaircraft; 2) the quadrotor; 3) the convertible aircraft and 4) vision applications by using the convertible aircraft. In a first part, a Lyapunov-based controllaw is developed to steer a fixed wing mini aerial vehicle along a desired path. Furthermore a path generator is proposed. The resulting control strategy yields global convergence of the current path of the MAV to the desired path. In a second part, a Lyapunov-based control using singular perturbation theory is proposed and applied on dynamics of the MAV. Furthermore, in this part we address the problem of fault detection and diagnosis (FDD) for a quad-rotor. In the third part a new control strategy for the transition between airplane and helicopter mode, and vice versa, in convertible planes is presented. The analysis is carried out for the longitudinal model of the PVHAT (Planar VerticalHelicopter-Airplane Transition) aircraft, which is an airplane having tilting rotors in order to achieve the transition maneuver. The resulting closed loop control algorithm is proved to be globally asymptotically stable. Finally in thefourth part of this thesis the problem of estimation and tracking of a road using avision embedded system in the PVHAT aircraft is solved. The global exponential stability of the position subsystem together with the switching controller is demonstrated. Illustrative simulations and experimental results obtained on several experimental platforms developed in this thesis, assess the implementability of the proposed control laws and highlight the merits of the approach.
8

Contrôle automatique de véhicules aériens à voilure fixe / Nonlinear automatic control of fixed-wing aerial vehicles

Kai, Jean-Marie 29 November 2018 (has links)
Cette thèse développe une nouvelle approche de contrôle pour les avions à échelle réduite. Les lois de commande proposées exploitent un modèle non linéaire simple mais pertinent des forces aérodynamiques appliquées à l’aéronef. Ils reposent sur une structure hiérarchique de contrôle non linéaires, et sont synthétisées sur la base d’analyse de stabilité et de convergence théoriques. Ils sont conçus pour fonctionner sur un large domaine de vol. En particulier, ils évitent les singularités associées à la paramétrisation de l'attitude et la direction de la vitesse. Dans un premier temps, le problème de stabilisation de trajectoires de référence est résolu en étendant la méthode du "thrust vectoring", utilisée pour les véhicules à voilure tournante, au cas des aéronefs à voilure fixe. Dans le cas des avions, le principal défi est de prendre en compte les forces aérodynamiques dans la conception des systèmes de commande. Afin de résoudre ce problème, le contrôle proposé est conçu et analysé sur la base du modèle de forces aérodynamique proposé. Le domaine d'utilisation de cette loi de commande est élargi et englobe les trajectoires d'équilibre (trim trajectories) qui sont classiquement utilisées dans la littérature. Cette solution est ensuite adaptée au problème de suivi de chemin, afin de concevoir des lois de guidage cinématique et de contrôle dynamique applicables à presque tout chemin 3D régulier. Les lois de contrôle proposées contiennent des termes intégraux qui robustifient le contrôle vis-à-vis de dynamiques non modélisées. Plusieurs problèmes pratiques sont adressés et les lois de commande proposées sont validées par des simulations du type "hardware-in-the-loop". Enfin, des résultats d'essais en vol illustrent la performance des lois de contrôle proposées. / The present thesis develops a new control approach for scale-model airplanes. The proposed control solutions exploit a simple but pertinent nonlinear model of aerodynamic forces acting on the aircraft. Nonlinear controllers are based on a hierarchical structure, and are derived on the basis of theoretical stability and convergence analyses. They are designed to operate on a large spectrum of operating conditions. In particular, they avoid the singularities associated with the parameterization of the attitude and the heading of the vehicle, and do not rely on a decoupling between longitudinal and lateral dynamics. First, the trajectory tracking problem is addressed by extending the thrust vectoring method used for small rotor vehicles to the case of fixed wing vehicles. In the case of airplanes, the main challenge is to take into account the aerodynamic forces in the design of control systems. In order to solve this problem, the proposed control is designed and analyzed on the basis of the proposed aerodynamic forces model. The flight envelope is thus broadened beyond trim trajectories which are classically used in the literature. This solution is then adapted to the path following problem, and kinematic guidance and dynamic control laws are developed within a single coherent framework that applies to almost any regular 3D path. The proposed control laws incorporate integral terms that robustify the control with respect to unmodelled dynamics. Several practical issues are addressed and the proposed control laws are validated via hardware-in-the-loop simulations. Finally, successful flight test results illustrate the soundness and performance of the proposed control laws.
9

Vision-based Strategies for Landing of Fixed Wing Unmanned Aerial Vehicles

Marianandam, Peter Arun January 2015 (has links) (PDF)
Vision-based conventional landing of a fixed wing UAV is addressed in this thesis. The work includes mathematical modeling, interface to a software for rendering the outside scenery, image processing techniques, control law development and outdoor experimentation. This research focuses on detecting the lines or the edges that flank the landing site, use them as visual cues to extract the geometrical parameters such as the line co-ordinates and the line slopes, that are mapped to the control law, to align and conventionally land the fixed wing UAV. Pre-processing and image processing techniques such as Canny Edge detection and Hough Transforms have been used to detect the runway lines or the edges of a landing strip. A Vision-in-the-Loop Simulation (VILS) set up on a personal computer or laptop, has been developed, without any external camera/equipment or networking cables that enables visual serving toper form vision-based studies and simulation. UAV mass, inertia, engine and aero data from literature has been used along withUAV6DOF equations to represent the UAV mathematical model. The UAV model is interfaced to a software using UDP data packets via ports, for rendering the outside scenery in accordance with the UAV’s translation and orientation. The snapshots of the outside scenery, that is passed through an internet URL by including the ‘http’ protocol, is image processed to detect the lines and the line parameters for the control. VILS set has been used to simulate UAV alignment to the runway and landing. Vision-based alignment is achieved by rolling the UAV such that the landing strip that is off center is brought to the center of the image plane. A two stage proportional aileron control input using the line co-ordinates, bringing the midpoints of the top ends of the runway lines to the center of the image, followed by bringing the mid points of the bottom ends of the runway lines to the center of the image has been demonstrated through simulation. A vision-based control for landing has been developed, that consists of an elevator command that is commiserate with the acceptable range of glide slope followed by a flare command till touch down, which is a function of the flare height and estimated height from the 3rd order polynomial of the runway slope obtained by characterization. The feasibility of using the algorithms for a semi-prepared or unprepared landing strip with no visible runway lines have also been demonstrated. Landing on an empty tract of land and in poor visibility condition, by synthetically drawing the runway lines based on a single 3rd order slope. vs height polynomial solution are also presented. A fixed area, and a dynamic area search for the Hough peaks in the Hough accumulator array for the correct detection of lines are addressed. A novel technique for crosswind landing, quite different from conventional techniques, has been introduced, using only the aileron control input for correcting the drift. Three different strategies using the line co-ordinates and the line slopes, with varying levels of accuracy have been presented and compared. About 125 landing data of a manned instrumented prototype aircraft have been analysed to corroborate the findings of this research. Outdoor experiments are also conducted to verify the feasibility of using the line detection algorithm in a realistic scenario and to generate experimental evidence for the findings of this research. Computation time estimates are presented to establish the feasibility of using vision for the problem of conventional landing. The thesis concludes with the findings and direction for future work.

Page generated in 0.067 seconds