Spelling suggestions: "subject:"fluides dde bingham"" "subject:"fluides dde d'ingham""
1 |
Mathematical models for the study of granular fluids / Modèles mathématiques pour l'étude des fluides granulairesObando Vallejos, Benjamin 18 December 2018 (has links)
Cette thèse vise à obtenir et à développer des modèles mathématiques pour comprendre certains aspects de la dynamique des fluides granulaires hétérogènes. Plus précisément, le résultat attendu consiste à développer trois modèles. Nous supposons dans un premier temps que la dynamique du matériau granulaire est modélisée à l’aide d’une approche fondée sur la théorie du mélange. D’autre part, pour les deux modèles restant, nous considérons que le fluide granulaire est modélisé à l’aide d’une approche multiphase associant des structures et des fluides rigides. Plus exactement : • Dans le premier modèle, nous avons obtenu un ensemble d’équations basées sur la théorie du mélange en utilisant des outils d’homogénéisation et une procédure thermodynamique. Ces équations reflètent deux propriétés essentielles des fluides granulaires : la nature visqueuse du fluide interstitiel et un comportement de type Coulomb de la composante granulaire. Avec nos équations, nous étudions le problème de Couette entre deux cylindres infinis d’un écoulement hétérogène granulaire dense, composé d’un fluide newtonien et d’une composante solide. • Dans le deuxième modèle, nous considérons le mouvement d’un corps rigide dans un matériau viscoplastique. Les équations 3D de Bingham modélisent ce matériau et les lois de Newton régissent le déplacement du corps rigide. Notre résultat principal est d’établir l’existence d’une solution faible pour le système correspondant. • Dans le troisième modèle, nous considérons le mouvement d’un corps rigide conducteur thermique parfait dans un fluide newtonien conducteur de la chaleur. Les équations 3D de Fourier-Navier-Stokes modélisent le fluide, tandis que les lois de Newton et l’équilibre de l’énergie interne modélisent le déplacement du corps rigide. Notre principal objectif dans cette partie est de prouver l’existence d’une solution faible pour le système correspondant. La formulation faible est composée de l’équilibre entre la quantité du mouvement et l’équation de l’énergie totale, qui inclut la pression du fluide, et implique une limite libre due au mouvement du corps rigide. Pour obtenir une pression intégrable, nous considérons une condition au limite de glissement de Navier pour la limite extérieure et l’interface mutuelle / This Ph.D. thesis aims to obtain and to develop some mathematical models to understand some aspects of the dynamics of heterogeneous granular fluids. More precisely, the expected result is to develop three models, one where the dynamics of the granular material is modeled using a mixture theory approach, and the other two, where we consider the granular fluid is modeled using a multiphase approach involving rigid structures and fluids. More precisely : • In the first model, we obtained a set of equations based on the mixture theory using homogenization tools and a thermodynamic procedure. These equations reflect two essential properties of granular fluids : the viscous nature of the interstitial fluid and a Coulomb-type of behavior of the granular component. With our equations, we study the problem of a dense granular heterogeneous flow, composed by a Newtonian fluid and a solid component in the setting of the Couette flow between two infinite cylinders. • In the second model, we consider the motion of a rigid body in a viscoplastic material. The 3D Bingham equations model this material, and the Newton laws govern the displacement of the rigid body. Our main result is the existence of a weak solution for the corresponding system. • In the third model, we consider the motion of a perfect heat conductor rigid body in a heat conducting Newtonian fluid. The 3D Fourier-Navier-Stokes equations model the fluid, and the Newton laws and the balance of internal energy model the rigid body. Our main result is the existence of a weak solution for the corresponding system. The weak formulation is composed by the balance of momentum and the balance of total energy equation which includes the pressure of the fluid, and it involves a free boundary (due to the motion of the rigid body). To obtain an integrable pressure, we consider a Navier slip boundary condition for the outer boundary and the mutual interface
|
2 |
Méthodes numériques pour la simulation des écoulements de matériaux granulaires par une approche continue / Numerical methods for the simulation of continuum granular flow modelsRiber, Stéphanie 03 February 2017 (has links)
Cette thèse traite de la modélisation et des méthodes numériques pour la simulation d'écoulements de fluides non-Newtoniens, et particulièrement, de matériaux granulaires. Une application de ce travail concerne les poudres de couverture utilisées pour protéger thermiquement le métal de l'air dans le procédé de coulée en source d'alliages métalliques. Ces poudres sont conditionnées dans des sacs disposés dans la lingotière, qui brûlent suite aux fortes chaleurs engendrées, et permettant son écoulement sur la surface du métal. Ainsi, la simulation numérique apparaît comme un puissant outil pour l'optimisation du procédé, et notamment, de l'étalement de ces poudres.Dans ce travail, une formulation éléments finis a été proposée pour modéliser l'écoulement multiphasique des matériaux granulaires dans un formalisme de la mécanique des milieux continus. Les équations associées sont résolues via des schémas numériques stabilisés, couplés avec la méthode Level-Set pour capturer et suivre le profil du matériau granulaire au cours de la simulation. Dans un premier temps, les outils numériques ont été testés sur des cas d'écoulements de fluides de Bingham, où les fortes non-linéarités sont traitées par une méthode de régularisation. Puis la formulation est étendue aux écoulements de granulaires secs, dont le comportement piezzo-dépendent est traduit par la loi mu(I). Le modèle a été validé sur des cas d'effondrement de colonnes de grains, et une étude de sensibilité aux conditions aux limites et constantes physiques du modèle est proposée.Enfin, des cas industriels de chutes de poudres sur substrats solide et métal fondu ont été menés, amenant à des premières pistes pour l'optimisation du procédé de coulée en lingotière. / This thesis is devoted to the modeling and numerical methods for the simulation of non-Newtonian flows, and focuses particularly on granular materials flows. This work is applied to molten powders aiming to ensure metal thermal protection from the air in ingot casting process of metallic alloys. These powders are conditionned into bags disposed into the mold, which burn due to high temperatures, and allowing the powder spreading onto the metal surface. Thus, numerical simulation appears as a powerful tool for the process optimization, and especially, for the powder spreading.In this work, a finite element formulation has been proposed for the modeling of granular multiphase flows, by a continuum approach. The associated equations are solved using stabilized numerical schemes, coupled with the Level-Set method to capture and follow the granular profile during the simulation. First, the numerical tools have been implemented for Bingham flows, by using regularization a method. Then, the formulation was extended to dry granular flows, by the use of the mu(I) rheology constitutive model for describing its pressure-dependent behavior. The model has been validated on granular collapses, and a sensitivity analysis to boundary conditions and physical constants has been proposed.Finally, industrial cases of powder chutes ontoboth solid and liquid metla substrates have been conducted, leading to preliminary solutions for the optimization of ingot casting process.
|
Page generated in 0.0593 seconds