• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effet dispersif pour les fluides anisotropes avec viscosité évanescente en rotation rapide

Ngo, Van-Sang 07 October 2009 (has links) (PDF)
Mon travail de thèse a pour objet l'étude de fluides anisotropes en rotation rapide dans $\mathbb{R}^3$, quand la viscosité tend vers zéro avec le nombre de Rossby $\varepsilon > 0$. J'ai démontré en particulier des résultats d'existence globale pour des données arbitrairement grandes quand le nombre de Rossby $\varepsilon$ tend vers zéro et j'ai mis en lumière le rôle joué par l'effet dispersif. Dans la dernière partie de la thèse, j'ai démontré l'analyticité de la solution globale du système des fluides de grade deux pour des données initiales analytiques petites. Dans la première partie, j'ai considéré les équations de Navier-Stokes avec terme de rotation $\frac{u\wedge e_3}{\varepsilon}$, et avec viscosité verticale nulle et viscosité horizontale petite de l'ordre de $\varepsilon^\alpha$, avec $\alpha > 0$ dans le cas où le système limite, quand $\varepsilon$ tend vers zéro, est nul. J'ai démontré l'existence globale de la solution forte pour des données initiales grandes, quand $\varepsilon > 0$ est suffisamment petit. J'ai suivi la méthode introduite par J.-Y. Chemin, B. Desjardins, I. Gallagher et E. Grenier, c'est-à-dire, j'ai décomposé le système de départ en un système linéaire avec donnée initiale plus régulière et un système non-linéaire avec donnée initiale petite. Pour le système linéaire, une grande partie du travail consiste à adapter les estimations de Strichartz et à trouver de nouvelles estimations qui tiennent compte de la viscosité petite. Pour le système non-linéaire, j'ai utilisé une méthode de ``bootstrap'', plus délicate que dans le cas classique, à cause de la petitesse de la viscosité. Toujours dans cette première partie, j'ai également considéré le cas où le système limite n'est pas nul. Pour ce cas, j'ai montré, en ajoutant un terme de ``friction'' aux équations considérées, de bonnes estimations dissipatives et surtout de bonnes propriétés pour le système limite, ce qui m'a permis de montrer l'existence globale de solutions fortes. Dans le dernier paragraphe de cette partie, j'ai étudié une application importante de la méthode ci-dessus aux fluides en rotation rapide entre deux plaques infinies dans le cas la viscosité horizontale est petite, de l'ordre de $\varepsilon^\alpha$, $\alpha > 0$. La deuxième partie est un travail en collaboration avec Frédéric Charve (Université Paris 12 - Val de Marne). Il s'agit de l'étude des équations primitives dans $\mathbb{R}^3$ avec, comme précédemment, viscosité verticale nulle et viscosité horizontale de taille $\varepsilon^\alpha$, $\alpha > 0$. Nous avons développé la méthode de la première partie dans le cadre des équations primitives en adaptant au cas anisotrope les calculs faits par F. Charve dans le cas isotrope. La troisième partie est consacrée à l'étude du système de la magnéto-hydrodynamique en rotation rapide dans $\mathbb{R}^3$ dans le cas anisotrope. Je démontre d'abord des résultats d'existence locale (globale pour des données petites) et d'unicité de la solution forte. Avec des paramètres bien choisis, j'ai pu appliquer la méthode développée dans les deux premières parties et montrer que le système de la magnéto-hydrodynamique est globalement bien posé pour des données grandes. Finalement, dans la dernière partie de la thèse, j'ai considéré le problème de propagation de régularité pour le système des fluides de grade deux sur le tore $\mathbb{T}^3$. En utilisant une technique développée par J.-Y. Chemin, j'ai montré que, si la donnée initiale est petite dans une classe de Gevrey appropriée, la solution du système de fluides de grade deux existe globalement en temps, reste dans une certaine classe de Gevrey pour tout temps positif et est donc analytique.
2

Dynamique des fluides de grade deux

Jaffal, Basma 14 December 2010 (has links) (PDF)
Cette thèse est consacrée à l'étude des équations des fluides de grade deux. Lorsque le coefficient matériel $\alpha$ est petit, ces équations peuvent etre considérées comme une perturbation singulière des équations de Navier-Stokes puisqu'elles font intervenir un terme de dérivée d'ordre trois. Dans une première partie, on considère les équations des fluides de grade deux en rotation rapide dans un tore tridimensionnel. On démontre deux résultats d'existence globale de solutions fortes . Dans le premier, on suppose que le coefficient matériel $\alpha$ est arbitraire et que les troisièmes composantes des moyennes verticales de la donnée initiale et du terme de force sont petites par rapport aux composantes horizontales. Dans le deuxième cas, on ne restreint pas la taille de la donnée initiale et du terme de force, mais on suppose que $\alpha$ est assez petit. Dans ces deux cas, on montre que le système des fluides de grade deux en rotation rapide converge vers un système limite couplé, composé d'un système linéaire et d'un système de fluides de grade deux à deux variables, mais à trois composantes. Une partie essentielle du travail consiste à démontrer l'existence globale des solutions de ce système limite à trois composantes. Dans la deuxième partie, on étudie le comportement asymptotique en temps grand du système des fluides de grade deux dans l'espace $\mathbb{R}^2$. En introduisant des changements de variables d'échelle et en écrivant des estimations d'énergie dans des espaces de Sobolev à poids polynomiaux, on démontre que, sous une condition de petitesse sur la donnée initiale, les solutions des fluides de grade deux convergent vers le tourbillon d'Oseen. On donne aussi une estimation du taux de convergence. La dernière partie de cette thèse porte sur la comparaison de la dynamique des équations des fluides de grade deux avec celle des équations de Navier-Stokes en dimension deux d'espace. On montre que, si $z_0$ est un point d'équilibre hyperbolique des équations de Navier-Stokes, le système des fluides de grade deux admet un unique point d'équilibre $z_{\alpha}$ dans un certain voisinage de $z_0$, si $\alpha$ est assez petit. Ensuite, on construit la variété locale instable de $z_{\alpha}$ et on la compare à celle de $z_0$.

Page generated in 0.098 seconds