• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análisis Comparativo del Metabolismo de Lactato para Células CHO en Glucosa y Galactosa

Wilkens Díaz-Muñoz, Camila January 2011 (has links)
En estudios anteriores se ha mostrado que células CHO productoras de tPA sufren una alteración del estado metabólico cuando el cultivo es suplementado con una mezcla de glucosa y galactosa. Este cambio se caracteriza por la reincorporación de lactato a la célula, pero su destino metabólico no ha sido determinado aún. Para comprender las condiciones que permiten la utilización de lactato como fuente de carbono se realizaron cuatro experimentos en cultivo batch con distintas combinaciones de glucosa y galactosa. Cuando el medio es suplementado solamente con glucosa se observa una producción sostenida de lactato. En cambio, en las condiciones con glucosa y galactosa se ve que primero se utiliza exclusivamente glucosa y se produce lactato, y una vez que se agota esta fuente de carbono comienza el consumo de galactosa junto a lactato. Al comparar mediante análisis de flujos metabólicos los estados de las células con y sin alteración metabólica, se observa un cambio en la distribución de flujos involucrados en el metabolismo del piruvato. Cuando la tasa específica de consumo de la fuente de carbono principal es baja no se produce suficiente piruvato para que las células mantengan sus requerimientos energéticos. Este resultado es consistente con los entregados por el modelo dinámico del metabolismo de glucosa y galactosa desarrollado en este trabajo. Inicialmente en los cultivos se observan flujos intracelulares altos, los cuales disminuyen lenta pero continuamente hasta alcanzar una condición en que no se produce suficiente piruvato para mantener el metabolismo energético de la célula. El consumo de lactato es posible en cultivos suplementados con glucosa y galactosa debido a que la célula alcanza condiciones intra y extracelulares específicas que permiten la inversión de la reacción catalizada por la enzima lactato dehidrogenasa y del gradiente que impulsa transporte de lactato. La evidencia encontrada en este trabajo sugiere que durante el consumo de glucosa se produce piruvato en exceso lo que lleva su acumulación y posterior conversión hacia lactato el cual se acumula también en el interior de la célula. Las altas concentraciones de lactato en el medio intracelular y la acidificación de éste debido a la glicólisis promueven el flujo del ácido láctico hacia el exterior de la célula mediante el transportador de monocarboxilatos. Cuando comienza el consumo de galactosa, el cual es más lento que el de glucosa, la concentración de piruvato, lactato y H+ disminuye permitiendo la inversión de la dirección de transporte del transportador y de la enzima lactato dehidrogenasa, promoviendo el consumo de lactato. Mediante el análisis de flujos metabólicos se determinó que en esta etapa del cultivo la mayoría de los recursos celulares y el ácido láctico son utilizados para mantener el metabolismo energético lo que explica también la disminución de la proliferación celular observada. Los resultados obtenidos indican que las concentraciones de piruvato, H+, lactato intra y extracelular, el estado RedOx y su evolución en el tiempo son los responsables en determinar la dirección del metabolismo del lactato. El entendimiento de la vía del lactato permitiría nuevos diseños de medio de cultivo, en los cuales se produzcan concentraciones menores de lactato. En cultivos donde el lactato es consumido o producido en una nueva tasa se observa una viabilidad extendida y por lo tanto en estas condiciones es factible alcanzar mayores niveles de producción de proteína recombinante.
2

Implementación de un sistema de cultivo de células hepáticas como modelo In vitro para estudios metabólicos

Acuña Leppe, Camilo Andrés January 2013 (has links)
Ingeniero Civil en Biotecnología / Ingeniero Civil Químico / Debido a que el hígado posee funciones únicas, es de gran interés desarrollar herramientas que permitan conseguir un mejor entendimiento global del comportamiento de las células hepáticas bajo cambios de las condiciones de crecimiento causado por agentes externos, tales como cambios en la suplementación de la fuente de carbono o la utilización de drogas en el medio de cultivo. El objetivo de este de esta memoria es establecer una metodología que permita realizar estudios metabólicos en células de origen hepático, con herramientas in silico que complemente los trabajos de investigaciones in vitro. Para ello, se utilizará la línea celular HepG2, ya que presenta ventajas frente a otras células de origen hepático, como su alta capacidad proliferativa y su fenotipo estable. Junto a esto se diseñó un modelo hepático para describir el metabolismo intracelular, que considera 37 metabolitos y 32 reacciones, abarcando las principales vías metabólicas de una célula hepática. En un primer estudio experimental se analizó como afecta en el metabolismo de las células la aplicación de agente nocivo acetaminofén (APAP), y si el daño es contrarrestable utilizando N-acetilcisteína (NAC) como agente protector. Como resultado se obtuvo que la concentración utilizada de APAP en el medio (1 [mM]) es altamente tóxica ya que frena de inmediato el crecimiento celular, entrando a una fase de muerte celular. Del análisis de flujo metabólico aplicado a este caso se obtuvo que existe una alta tasa específica de producción de lactato, y por ende, los flujos son redireccionados para que aumenten los niveles de piruvato intracelular a partir de diversa fuentes de carbono además de la glucosa (triptófano y triglicéridos), y sea utilizado en la síntesis de lactato. Con respecto a la protección, sólo fue posible obtener una curva de crecimiento comparable al control cuando se utilizó NAC (5 [mM]) 3 horas después que se administrara APAP. La aplicación previa tuvo el mismo resultado que el caso en que sólo se utiliza APAP. El análisis de flujo metabólico del único caso en que hubo una protección efectiva está sujeto a errores de cálculos de tasas específicas, al igual que el caso control. Grandes desbalances de carbono y nitrógeno, junto con una distribución de flujos internos con comportamientos no esperados, no permiten comparar los resultados entre los casos. Sin embargo, este hecho refleja lo importante que es tener mediciones precisas y un buen diseño experimental para calcular las tasas específicas de consumo/producción, para así obtener un correcto funcionamiento del modelo hepático planteado. En el segundo estudio, se analizaron los cambios metabólicos que se generan al utilizar diferentes suplementaciones del carbohidrato en el medio. Los casos fueron una suplementación pura de glucosa, una pura de fructosa y una mezcla de ellas (en una razón 1:1). Al realizar las curvas de crecimiento, se obtuvieron parámetros de crecimiento similares, siendo el caso de fructosa pura en donde las células crecen a menor velocidad, dado que están acostumbradas a crecer en un medio con glucosa. Este hecho se ratifica al realizar el análisis de flujo metabólico, donde el caso de mayor consumo de hexosa, producción de lactato y síntesis de triglicéridos fue el caso en que se suplementó exclusivamente con glucosa. En los casos en que existía fructosa en el medio, las células presentaron una tasa menor de consumo de azúcar, y por consiguiente una menor producción de triglicéridos. Además en estos dos casos, los flujos hacia síntesis de lactato y síntesis de triglicéridos son más bajo, pero con un flujo permanente en el ciclo TCA cercano al doble que el caso de suplementación con glucosa pura. El modelo hepático fue capaz representar el metabolismo de la línea celular HepG2 en ambos estudios. Sin embargo, debido a los resultados del primero, es necesario realizar más ensayos de toxicidad de sustancias, para validar el modelo y la metodología empleada en este trabajo, con el fin de caracterizar y mejorar funciones hepáticas en sistemas de cultivo in vitro.

Page generated in 0.0656 seconds