Spelling suggestions: "subject:"fluorinated"" "subject:"afluorinated""
21 |
CONTROLLED SYNTHESIS AND FUNCTIONALIZATION OF NANOPOROUS SOLGEL SILICA PARTICLES AND GELSTan, Bing 01 January 2005 (has links)
This dissertation addresses three research areas in the sol-gel synthesis of functionalmaterials. The first is the kinetics of hydrolysis and condensation of variousorganoalkoxysilanes. Two mathematical models are developed for the sol-gel reaction inbasic conditions with and without nearest-neighbor effects. Effects on reactivity aremeasured with systematic changes in the organic group structure. Replacing onemethoxy group on the precursor with a methyl group decelerates hydrolysis under basicconditions, but accelerates condensation under acidic conditions. Replacing two methylfunctionalprecursors with one ethylene-bridged precursor accelerates hydrolysis in base,but decelerates condensation in acid. Replacing an ethylene bridge with a hexylenebridge always decelerates the sol-gel reactions. Adding an amine into the hexylenebridge always accelerates the sol-gel reactions. These trends show inductive effectsplaying a role only under basic conditions, while steric effects play a role at all pHvalues. The second topic of this thesis is the synthesis of organic-inorganic materialswith bridging or non-bridging organics. The structure of the organic-inorganic hybrids ispartially correlated with the kinetics of the precursors, but the trends indicate anadditional structural role of siloxane cyclization. The third topic of this thesis is thesynthesis of surfactant-templated nanoporous particles. The key to preparing orderedhybrid materials is found to be encouraging aggregation with a surfactant whilediscouraging random condensation of silanes independent of the surfactants. Ahomologous series of cationic pyridinium chloride fluorinated surfactants with varyingchain length are used as pore templates. Typical pore structures such as hexagonal closepackedcylinders are synthesized, as well as new pore structures including random meshphase pores and vesicular silica particles with bilayer or multilayer shells.Fluorosurfactants enable the formation of unusually small pores (1.6 nm) and poresformed from discs or bilayers. In the presence of ethanol, spherical particles with radiallyoriented pores are shown by TEM to form by precipitation of disordered silica-surfactantparticles followed by assembly into organized structures. High-capacity hollow particleswith ordered mesoporous shells are prepared by dual latex / surfactant templating.Finally, we load amine-functionalized mesoporous silica with highly dispersedsuperparamagnetic iron oxide nanoparticles.
|
22 |
Hydrolysis and Atmospheric Oxidation Reactions of Perfluorinated Carboxylic Acid PrecursorsJackson, Derek Andrew 08 August 2013 (has links)
This dissertation explores a number of different environmentally relevant reactions that lead to the production of perfluorocarboxylic acids (PFCAs), a family of environmental pollutants that does not undergo any further degradation pathways.
The compound perfluoro-2-methyl-3-pentanone (PFMP) is a new fire fighting fluid developed by 3M that is designed as a Halon replacement. The environment fate of PFMP with regards to direct photolysis, abiotic hydrolysis and hydration was determined using a combination of laboratory experiments and computational modeling. PFMP was found to undergo direct photolysis giving a lifetime of 4-14 days depending on latitude and time of year. Offline samples confirmed PFCA products and a mechanism was proposed.
Polyfluorinated amides (PFAMs) are a class of chemicals produced as byproducts of polyfluorinated sulfonamide synthesis via electrochemical fluorination (ECF). Using synthesized standards of four model compounds, PFAMs were detected and quantified in a variety of legacy commercial materials synthesized by ECF. PFAMs were hypothesized to undergo biological hydrolysis reactions, suggesting their importance as historical PFOA precursors.
The PFAMs were also investigated with regards to their environmental fate upon atmospheric oxidation. Using a smog chamber, the kinetics and degradation mechanisms of N-ethylperfluorobutyramide (EtFBA) were elucidated. The lifetime of EtFBA to oxidation by OH was found to be approximately 4 days. Using offline sampling, PFAMs were shown to give PFCAs upon atmospheric oxidation and a plausible mechanism was proposed involving an initial N-dealkylation step followed by loss of isocyanic acid to give a perfluorinated radical. The perfluorinated radical then produces PFCAs by a series of known atmospheric reactions.
Finally, the biological hydrolysis of the polyfluoroalkyl phosphate monoesters (monoPAPs) were studied in vitro using a bovine alkaline phosphatase enzyme. Michaelis-Menten kinetic parameters were measured and compared to hexyl phosphate. It was discovered that monoPAPs hydrolyzed on average 100 times faster than hexyl phosphate due to the electron withdrawing fluorine substituents. The results were also used to rationalize the results of a previous in vivo study which suggested monoPAPs were rapidly hydrolyzed in the small intestines of rats following a high dose by oral gavage.
|
23 |
Hydrolysis and Atmospheric Oxidation Reactions of Perfluorinated Carboxylic Acid PrecursorsJackson, Derek Andrew 08 August 2013 (has links)
This dissertation explores a number of different environmentally relevant reactions that lead to the production of perfluorocarboxylic acids (PFCAs), a family of environmental pollutants that does not undergo any further degradation pathways.
The compound perfluoro-2-methyl-3-pentanone (PFMP) is a new fire fighting fluid developed by 3M that is designed as a Halon replacement. The environment fate of PFMP with regards to direct photolysis, abiotic hydrolysis and hydration was determined using a combination of laboratory experiments and computational modeling. PFMP was found to undergo direct photolysis giving a lifetime of 4-14 days depending on latitude and time of year. Offline samples confirmed PFCA products and a mechanism was proposed.
Polyfluorinated amides (PFAMs) are a class of chemicals produced as byproducts of polyfluorinated sulfonamide synthesis via electrochemical fluorination (ECF). Using synthesized standards of four model compounds, PFAMs were detected and quantified in a variety of legacy commercial materials synthesized by ECF. PFAMs were hypothesized to undergo biological hydrolysis reactions, suggesting their importance as historical PFOA precursors.
The PFAMs were also investigated with regards to their environmental fate upon atmospheric oxidation. Using a smog chamber, the kinetics and degradation mechanisms of N-ethylperfluorobutyramide (EtFBA) were elucidated. The lifetime of EtFBA to oxidation by OH was found to be approximately 4 days. Using offline sampling, PFAMs were shown to give PFCAs upon atmospheric oxidation and a plausible mechanism was proposed involving an initial N-dealkylation step followed by loss of isocyanic acid to give a perfluorinated radical. The perfluorinated radical then produces PFCAs by a series of known atmospheric reactions.
Finally, the biological hydrolysis of the polyfluoroalkyl phosphate monoesters (monoPAPs) were studied in vitro using a bovine alkaline phosphatase enzyme. Michaelis-Menten kinetic parameters were measured and compared to hexyl phosphate. It was discovered that monoPAPs hydrolyzed on average 100 times faster than hexyl phosphate due to the electron withdrawing fluorine substituents. The results were also used to rationalize the results of a previous in vivo study which suggested monoPAPs were rapidly hydrolyzed in the small intestines of rats following a high dose by oral gavage.
|
24 |
Synthesis of fluorinated heterocyclic compounds and study of their interaction with DNAZeinali, Fatemeh January 2017 (has links)
Over fifty structurally diverse, novel fluorinated heteroarenes, have been successfully synthesised by SNAr reaction of a range of fluorinated arenes including pentafluoropyridine, hexafluorobenzene, and methyl pentafluorobenzoate by introduction of a range of groups such as imidazole, triazole, benzimidazole, benzotriazole, and carbazole. Different water solubilising side chains were introduced to some of the successfully synthesised fluorinated heteroarenes to improve water solubility and potential biological activity. X-ray crystal structures of over 10 compounds were obtained including those of two macrocyclic compounds containing 21- and 24-membered rings. The synthesised compounds have been characterized by elemental analysis, IR, 1H and 19F spectroscopy and high resolution mass spectrometry. These compounds have been screened for their biological activities and possible interaction with DNA by methods including UV-visible spectroscopy, fluorescence spectroscopy, co-crystallization for X-ray diffraction analysis, and antimicrobial activity. A number of the fluoroaryl benzimidazole derivatives have been tested against K-562 and MCF-7 cell lines and G361 and HOS cell lines. From the all tested compounds three tethered fluoroaryl benzimidazole derivatives demonstrated micromolar inhibition against K-562 and MCF-7 cell lines. These compounds, in addition to 1-tetrafluoropyrid-4-yl-2-tetrafluoropyrid-4-ylsulfanyl-1H-benzimidazole, also demonstrated micromolar inhibition against G361 and HOS cell lines. Two of the compounds were found to activate caspases leading to apoptosis.
|
25 |
Fluorinated Alcohols : A Perfect Medium for Direct Functionalization of Aromatics / Alcools fluorés : un milieu parfait pour la fonctionnalisation directe d'aromatiquesTang, Renjin 03 October 2018 (has links)
Le trifluoroéthanol (TFE) et l'hexafluoroisopropanol (HFIP) présentent des propriétés physicochimiques particulières comme un fort pouvoir ionisant élevé, une forte capacité à donner des liaisons hydrogène, et une faible nucléophilie. Ces différentes propriétés ont été avantageusement exploitées dans plusieurs réactions sans la présence de catalyseur. Dans un premier temps, l'étude de l'amination électrophile sélective d'aromatiques avec les azodicarboxylates a été réalisée dans l'HFIP pour conduire à une famille d'hydrazines aromatiques. Ensuite l'alkylation de Friedel-Crafts avec des hétéroaromatiques et des β-nitroalcènes a conduit à des dérivées de tryptamines. Ensuite, l'halogénation sélective d'aromatiques et d'hétérocycles en présence de N-halosuccinimides (NIS, NBS et NCS) a été développée. Egalement, nous avons étudié un nouveau système combinant l'HFIP et le KHSO4 qui est un sel inorganique peu coûteux. L'association de l'HFIP et de KHSO4 (10 mol%) est un système catalytique doux et efficace pour promouvoir certaines réactions. En particulier nous avons montré que ce système catalytique a été appliqué avec succès pour l'amination directe d'aromatiques peu activés avec des azodicarboxylates pour conduire à d'autres dérivés hydrazines. Ce système a aussi montré son efficacité dans la réaction directe de benzylation de Friedel-Crafts avec des alcools benzyliques. Ainsi une grande variétés de composés diarylméthanes dissymétriques a pu être obtenue avec une excellente régiosélectivité. / Due to the electron-withdrawing character of fluoroalkyl groups, fluorinated alcohols such as trifluoroethanol (TFE) and hexafluoroisopropanol (HFIP) exhibit a nearly unique set of properties that include high ionizing power, strong hydrogen bond donating ability, mild acidity, and low nucleophilicity. All of these properties have been exploited without the need of an external catalyst. At first, the para-selective amination of free anilines with azodicarboxylates in HFIP led to hydrazine derivatives. The Friedel-Crafts alkylation of indoles and electron-rich arenes with β-nitroalkenes succeeded to afford tryptamines derivatives. Then the regioselective halogenation of arenes and heterocycles with N-halosuccinimides (NIS, NBS, NCS) have been developed. Meanwhile, we have disclosed a new mild system between HFIP and KHSO4 which is a green, inexpensive and readily available inorganic salt. The association of HFIP/KHSO4 (10 mol%) is an efficient and mild catalytic system in order to promote some reactions. In particular, we showed that this system allowed the direct amination of slightly activated and neutral arenes with azodicarboxylates in order to give other families of hydrazines. This mild system has been applied successfully for the Friedel-Crafts benzylation with benzylic alcohols. These mild conditions provided a straightforward synthesis of a variety of unsymmetrical diarylmethanes in high yield with good to high regioselectivity
|
26 |
Syntéza fluorovaných nukleosidů / Synthesis of fluorinated nucleosidesNguyen, Van Hai January 2020 (has links)
The key intermediate 6-amino-7-iodo-7-deazapurine 3'-deoxy-3'-fluororibonucleoside was synthesized using multistep sequence of several reactions, which started from the commercially available D-xylose and 6-chloro-7-deazapurine. The synthetic strategy was based on fluorination of sugar and glycosylation with corresponding nucleobase afterwards. The fluorination of 5-protected-1,2-isopropylidine xylose with different protecting groups at position 5 always led to elimination. It was later discovered that isopropylidine forces the conformation, which is unfavorable for substitution. During the extensive optimization it was also found out that DAST appears to be an optimal fluorinating agent. Fluorination was performed on 2,3-unprotected xylose, which was subsequently used for glycosylation. After several unsuccessful attempts on "protection group free" glycosylation, Vorbrüggen glycosylation was successful and gave desired 3'-fluoro nucleoside in good yield. However, benzoyl group had to be introduced into position 2'. The protected nucleoside was then aminated and simultaneously deproctected with solution of aqueous NH3 and 1,4-dioxane. The obtained key intermediate was used for synthesis of a small series of desired 6-amino-7-hetaryl nucleoside using Pd-catalyzed Suzuki reaction under aqueous...
|
27 |
Synthesis of the Fluorinated Arylene Alkylene Ether and Research on Its Potential Thermotropic Behavior under Photochemical Crosslink ReactionWang, Weiran 09 June 2014 (has links)
No description available.
|
28 |
Evolution of Gas Permeation Properties of Several Fluorinated Polymeric Membranes through Thermal AnnealingAl Oraifi, Abdullah 20 June 2022 (has links)
High energy consumption is a crucial challenge in gas separation processes. With current energy intensive separation methods, there is a real need for more energy-efficient alternative technologies. Membrane technology demonstrates potential uses in industrial separation processes due to its potential energy efficiency, environmental friendliness, and small footprint. The continuous developments in material science contributed directly in enhancing the membrane performance through several engineering modifications such as thermal annealing, which presented visible improvements in gas permeation properties. The objective of this project was to investigate the thermal annealing of three fluorinated polymers (PAE1, PAE2, and TFMPD), aiming for favorable changes in gas permeation properties. In particular, each polymer was annealed for 3 h at various temperature values, targeting the intermediate stage, which is the zone where degradation started but a pure carbon structure stage was not formed yet. Overall, the thermal annealing study revealed that TFMPD had highest pure-gas separation performance among other polymers, in which the Robeson plots displayed that treated sample at 500 ºC surpassed the 2015 H2/CH4 upper bound, whereas the treated sample at 550 ºC surpassed 2019 upper bound of both CO2/CH4 and CO2/N2. Therefore, TFMPD can be a potential candidate polymer for membrane-based gas separation, especially for CO2 and H2 applications. This performance could be attributed to the internal structural changes in the polymer that occurred during thermal annealing. Hence, several characterization techniques were performed to detect these changes. For instance, it was realized that all polymers started crosslinking upon the thermal treatment at 350 ºC. Moreover, FTIR analysis indicated the release of several functional groups from treated polymers at high temperature values. Raman spectroscopy also confirmed that the observed substantial enhancement in gas permeation of annealed TFMPD at 550 ºC was due an early-stage carbon structure formation. Furthermore, several recommendations are proposed to continue the work in this project, which could lead to potential success of the thermally annealed polymers tested in this study in membrane-based gas separations applications.
|
29 |
Desenvolvimento de método de preparação de biomarcadores moleculares relacionados a N-acetilglicosaminas para estudos de sinalização celular / Development of preparation method of molecular biomarkers related N-acetylclucosamines for studies of cell signalingNunes, Paulo Sergio Gonçalves 28 March 2014 (has links)
Os carboidratos apresentam-se envolvidos em diversos eventos celulares, tais como geração de energia, sustentação celular, reconhecimento celular, processos de sinalização, etc. A OGlcNAcilação, uma das alterações proteicas pós-traducionais relacionada à adição de Nacetilglicosamina a resíduos de serina ou treonina em proteínas citoplasmáticas ou nucleares, vem demonstrando ser uma das alterações recíproca a O-fosforilação de proteínas e pode estar envolvida no desencadeamento de patologias como câncer, diabetes tipo II, e doenças neurodegenerativas. Tendo em vista à relevância da O-GlcNAcilação e a necessidade de ferramentas para seu estudo, temos como objetivo, desenvolver uma rota sintética para a obtenção de moléculas modificadas derivadas de N-acetilglicosamina, contendo o átomo de flúor ligado ao grupo N-acetil. As moléculas correspondem aos derivados glicopiranosídeo de metila 1 e glicoaminoácidos de serina 2 e treonina 3. Uma vez padronizada, os intermediários finais da rota serão utilizados para futura marcação com o 18F, o qual poderá ser empregado em estudos do processo de sinalização celular por O-GlcNAcilação, e no diagnóstico de câncer por PET. Assim, foram propostas, inicialmente, duas rotas sintéticas, uma para a síntese do derivado glicopiranosídeo de metila 1 e outra para os glicoaminoácidos 2 e 3, ambas utilizando o reagente cloridrato de 2-amino-2-desoxi-D-glicose (4) como percursor. A síntese do derivado 1 foi conduzida por meio da proteção do grupo amino do composto 4 pela formação de carbamato 5, e sequencial reação de glicosilação de Fischer (6 e 7), per-Oacetilação 8 e remoção do grupo protetor do amino 9. As etapas sequenciais relacionadas à condensação com o ácido bromoacético 10, e finalmente halogenação e desproteção do carboidrato 11 estão em andamento. A rota sintética proposta para a obtenção dos glicoaminoácidos 2 e 3 foi fundamentada na obtenção de um doador glicosídico contendo o grupo tricloroacetimidato e as hidroxilas protegidas com grupos benzílicos 16, e na utilização do aceptor glicosídico serina 17 e treonina 18, contendo os grupos amino e carboxila protegidos com 9-fluorenilmetóxicarbonil (Fmoc) e benzil (Bn), respectivamente. Até o momento não foi possível a síntese dos glicoaminoácidos 2 e 3 empregando o doador glicosídico inicialmente proposto (tricloroacetimidato), e mesmo após a variação do doador glicosídico, empregando tioaçucares per-O-benzilado 28, ou per-O-acetilado 26, não foi possível a obtenção do produto desejado. As dificuldades observadas na obtenção dos compostos, conduziram a elaboração de novas estratégias sintéticas que possuem o átomo de cloro como grupo abandonador na posição anomérica e a) uma amida {[(4- metilfenil)sulfonil]oxi}acético (33) em C-2, a qual exerce assistência anquimérica em C-1, e permite a funcionalização com o flúor e b) um azido em C-2, preparado a partir de glicais per- O-acetilados, desprovido de participação em C-1. Ambas as rotas sintéticas estão em andamento. / Carbohydrates are involved in many cellular events, such as energy source, sustenance, recognition, signaling processes, etc. O- GlcNAcylation is a post- translational proteins\' alteration related to the addition of N-acetylglucosamine to residues of serine or threonine in cytoplasmic or nuclear protein which has proven to be one of the reciprocal changes to Ophosphorylation of proteins and may be involved in the onset of pathologies such as cancer, type II diabetes, and neurodegenerative diseases. Given the relevance of O- GlcNAcylation and the importance of tools required for the study of this event, we aim to develop a synthetic route to obtain modified molecules derived from N-acetylglucosamine containing fluorine atom attached to the N -acetyl group. The molecules correspond to methyl glucopyranoside derivatives 1 and gluco-amino acids derived from serine 2 and threonine 3. Once the synthetic route is established, the final intermediates of the route will be used for further labeling with 18F, which may be employed in studies of cell signaling processes, involving OGlcNAcylation, and cancer diagnosis by PET. Thus, two synthetic routes were initially proposed: one for the preparation of the methyl glucopyranoside derivative 1 and another one for the gluco-amino acids 2 and 3, both using glucosamine hydrochloride (4) as a precursor. The synthesis of derivative 1 was conducted by protecting the amine group of compound 4 to form the carbamate 5, and sequential Fischer glycosylation (6, 7), per-O-acetylation (8) and removal of the protecting group from the amine (9). The sequential steps related to condensation with bromoacetic acid (10), halogenation and deprotection of the carbohydrate 11 are in progress. The proposed synthetic route for the preparation of 2 and 3 was based on a glycosidic donor containing trichloroacetimidate group, the protection of the hydroxyl groups with benzyl group (16) and glycoside acceptors serine 17 and threonine 18 containing amine and carboxyl groups protected with 9- fluorenylmethoxycarbonyl (Fmoc) and benzyl (Bn), respectively. Hitherto, the synthesis of gluco-amino acids 2 and 3 was not achieved using the glycosidic donor initially proposed (trichloroacetimidate), even after the change of the glycosidic donor using per-O-benzylated (28) or per-O-acetylated (26) thiosugars. The difficulties encountered for the synthesis of the target compounds led the design of new synthetic strategies which comprise a chlorine atom as leaving group in the anomeric position and either: a) an amide acetic acid (33) at C-2, which exerts anchimeric assistance at C-1, and allows functionalization with fluorine and b) an azide group at C- 2, prepared from per-O-acetylated glucal, with no participation at C-1. Both synthetic routes are in progress.
|
30 |
Desenvolvimento de método de preparação de biomarcadores moleculares relacionados a N-acetilglicosaminas para estudos de sinalização celular / Development of preparation method of molecular biomarkers related N-acetylclucosamines for studies of cell signalingPaulo Sergio Gonçalves Nunes 28 March 2014 (has links)
Os carboidratos apresentam-se envolvidos em diversos eventos celulares, tais como geração de energia, sustentação celular, reconhecimento celular, processos de sinalização, etc. A OGlcNAcilação, uma das alterações proteicas pós-traducionais relacionada à adição de Nacetilglicosamina a resíduos de serina ou treonina em proteínas citoplasmáticas ou nucleares, vem demonstrando ser uma das alterações recíproca a O-fosforilação de proteínas e pode estar envolvida no desencadeamento de patologias como câncer, diabetes tipo II, e doenças neurodegenerativas. Tendo em vista à relevância da O-GlcNAcilação e a necessidade de ferramentas para seu estudo, temos como objetivo, desenvolver uma rota sintética para a obtenção de moléculas modificadas derivadas de N-acetilglicosamina, contendo o átomo de flúor ligado ao grupo N-acetil. As moléculas correspondem aos derivados glicopiranosídeo de metila 1 e glicoaminoácidos de serina 2 e treonina 3. Uma vez padronizada, os intermediários finais da rota serão utilizados para futura marcação com o 18F, o qual poderá ser empregado em estudos do processo de sinalização celular por O-GlcNAcilação, e no diagnóstico de câncer por PET. Assim, foram propostas, inicialmente, duas rotas sintéticas, uma para a síntese do derivado glicopiranosídeo de metila 1 e outra para os glicoaminoácidos 2 e 3, ambas utilizando o reagente cloridrato de 2-amino-2-desoxi-D-glicose (4) como percursor. A síntese do derivado 1 foi conduzida por meio da proteção do grupo amino do composto 4 pela formação de carbamato 5, e sequencial reação de glicosilação de Fischer (6 e 7), per-Oacetilação 8 e remoção do grupo protetor do amino 9. As etapas sequenciais relacionadas à condensação com o ácido bromoacético 10, e finalmente halogenação e desproteção do carboidrato 11 estão em andamento. A rota sintética proposta para a obtenção dos glicoaminoácidos 2 e 3 foi fundamentada na obtenção de um doador glicosídico contendo o grupo tricloroacetimidato e as hidroxilas protegidas com grupos benzílicos 16, e na utilização do aceptor glicosídico serina 17 e treonina 18, contendo os grupos amino e carboxila protegidos com 9-fluorenilmetóxicarbonil (Fmoc) e benzil (Bn), respectivamente. Até o momento não foi possível a síntese dos glicoaminoácidos 2 e 3 empregando o doador glicosídico inicialmente proposto (tricloroacetimidato), e mesmo após a variação do doador glicosídico, empregando tioaçucares per-O-benzilado 28, ou per-O-acetilado 26, não foi possível a obtenção do produto desejado. As dificuldades observadas na obtenção dos compostos, conduziram a elaboração de novas estratégias sintéticas que possuem o átomo de cloro como grupo abandonador na posição anomérica e a) uma amida {[(4- metilfenil)sulfonil]oxi}acético (33) em C-2, a qual exerce assistência anquimérica em C-1, e permite a funcionalização com o flúor e b) um azido em C-2, preparado a partir de glicais per- O-acetilados, desprovido de participação em C-1. Ambas as rotas sintéticas estão em andamento. / Carbohydrates are involved in many cellular events, such as energy source, sustenance, recognition, signaling processes, etc. O- GlcNAcylation is a post- translational proteins\' alteration related to the addition of N-acetylglucosamine to residues of serine or threonine in cytoplasmic or nuclear protein which has proven to be one of the reciprocal changes to Ophosphorylation of proteins and may be involved in the onset of pathologies such as cancer, type II diabetes, and neurodegenerative diseases. Given the relevance of O- GlcNAcylation and the importance of tools required for the study of this event, we aim to develop a synthetic route to obtain modified molecules derived from N-acetylglucosamine containing fluorine atom attached to the N -acetyl group. The molecules correspond to methyl glucopyranoside derivatives 1 and gluco-amino acids derived from serine 2 and threonine 3. Once the synthetic route is established, the final intermediates of the route will be used for further labeling with 18F, which may be employed in studies of cell signaling processes, involving OGlcNAcylation, and cancer diagnosis by PET. Thus, two synthetic routes were initially proposed: one for the preparation of the methyl glucopyranoside derivative 1 and another one for the gluco-amino acids 2 and 3, both using glucosamine hydrochloride (4) as a precursor. The synthesis of derivative 1 was conducted by protecting the amine group of compound 4 to form the carbamate 5, and sequential Fischer glycosylation (6, 7), per-O-acetylation (8) and removal of the protecting group from the amine (9). The sequential steps related to condensation with bromoacetic acid (10), halogenation and deprotection of the carbohydrate 11 are in progress. The proposed synthetic route for the preparation of 2 and 3 was based on a glycosidic donor containing trichloroacetimidate group, the protection of the hydroxyl groups with benzyl group (16) and glycoside acceptors serine 17 and threonine 18 containing amine and carboxyl groups protected with 9- fluorenylmethoxycarbonyl (Fmoc) and benzyl (Bn), respectively. Hitherto, the synthesis of gluco-amino acids 2 and 3 was not achieved using the glycosidic donor initially proposed (trichloroacetimidate), even after the change of the glycosidic donor using per-O-benzylated (28) or per-O-acetylated (26) thiosugars. The difficulties encountered for the synthesis of the target compounds led the design of new synthetic strategies which comprise a chlorine atom as leaving group in the anomeric position and either: a) an amide acetic acid (33) at C-2, which exerts anchimeric assistance at C-1, and allows functionalization with fluorine and b) an azide group at C- 2, prepared from per-O-acetylated glucal, with no participation at C-1. Both synthetic routes are in progress.
|
Page generated in 0.0371 seconds