• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Möglichkeiten und Grenzen bei der Modellierung von Nährstoffeinträgen auf Flussgebietsebene / Drawbacks and opportunities in modelling of nutrient emissions into river basins – studies based on the MONERIS model / Untersuchungen am Beispiel des Modells MONERIS

Zweynert, Ulrike 17 April 2009 (has links) (PDF)
Modelle werden eingesetzt, um Menge und Herkunft der Stoffeinträge auf Flussgebietsebene zu analysieren. Aus den Ergebnissen der Modellierung lassen sich Handlungsempfehlungen zur Verbesserung der Gewässergüte ableiten. Für die Interpretation der Modellergebnisse sind Kenntnisse über die Genauigkeit und Aussagekraft der Ergebnisse notwendig. Das Modell MONERIS als konzeptionelles Modell für die Anwendung auf Flussgebietsebene wurde innerhalb der vorliegenden Arbeit in 5 europäischen Flusseinzugsgebieten angewandt. Sowohl mit verschiedenen Ansätzen aufbereitete Abflusswerte als auch unterschiedlich hoch aufgelöste Eingangsdaten führten bei der Modellierung zu Änderungen der berechneten Einträge und Frachten. Gezeigt wird, dass mit MONERIS sowohl mittlere Eintrags- und Frachtwerte für eine Periode von mehreren Jahren, als auch Werte für Einzeljahre berechnet werden können. Der Vergleich mit aus Konzentrations- und Abflussmessungen im Gewässer abgeleiteten Frachten wies Abweichungen von <30% auf. Bei der Modellierung von Einzeljahren konnten insbesondere die Jahre mit mittleren Niederschlagsbedingungen gut abgebildet werden. In Jahren mit hohen oder geringen Niederschlägen oder einer außergewöhnlichen Niederschlagsverteilung traten dagegen, bedingt durch die Kalibrierung der meisten Modellkoeffizienten für mittlere Abflussbedingungen von Perioden, Unter- oder Überschätzungen der gemessenen Frachten auf. Monatliche Einträge und Frachten wurden ebenfalls modelliert. Der Vergleich mit Messwerten zeigte hohe Abweichungen, sodass MONERIS für eine monatliche Berechnung noch weiterentwickelt werden muss. Dies betrifft vor allem die Genauigkeit der als Eingangsdaten verwendeten Abflüsse und der Abflusskomponenten sowie den in den Modellversionen vor 2008 verwendeten Retentionsansatz. Auch die räumliche Modellauflösung wurde untersucht und festgestellt, dass eine Modellierung mit MONERIS bis zu einer Auflösung von 1km² problemlos möglich ist. Die Schnittpunkte von Stoffeintragsmodellen mit Modellen aus der Siedlungswasserwirtschaft wurden durch einen Vergleich von MONERIS mit dem Modell STORM in einem stark urban geprägten Einzugsgebiet ermittelt. Obwohl die Unterschiede in den Modellansätzen deutlich wurden, konnte gezeigt werden, dass eine Ergänzung der beiden Modelltypen wünschenswert wäre. Abschließend wird ein neuer Ansatz für die Frachtberechnung aus Abfluss- und Konzentrationsmessungen vorgestellt, durch den die Genauigkeit der berechneten Jahresfrachten bei geringer Anzahl von Messwerten gegenüber etablierten Ansätzen erhöht werden kann. Da die aus Messwerten berechneten Frachten für die Modellkalibrierung und Validierung benötigt werden, kann so auch die Stoffeintragsmodellierung positiv beeinflusst werden. / Different models were used to analyse and calculate the amount and origin of the nutrient inputs into riverbasins. Recommended follow-up action can be derived from the model results to improve the river water quality. The interpretation of the modelling results requires the knowledge of the accurateness and the significance of the results. For the investigations, the MONERIS model as a conceptual model was applied in five European river catchments. Different approaches for data preparation as well as a different input data were resulting in a large variation of the calculated nutrient inputs and loads. It was shown, that the MONERIS model is applicable to calculate inputs and loads for periods of several years as well as for one year. In comparison with measured loads mean deviations less than 30% were found. Looking at a yearly timestep, the nutrient inputs and loads in years with mean precipitation conditions were well reproduced. Years with high or low precipitation tends to result in overor underestimation of the nutrient inputs and loads, caused by the calibration of the model coefficients for mean runoff conditions. Monthly inputs and loads were calculated with MONERIS for the first time. The comparison with measured loads shows high deviations. Model improvements have to bee made regarding runoff input values (and runoff components) and retention approach (in the model version before 2008). Furthermore the spatial model resolution was investigated. It could be shown, that the MONERIS model is applicable until a resolution of 1sq.km. In a further application, MONERIS was compared with the urban stormwater management model STORM. Even though there were differences in model approaches, it could be shown a relation between the models for a comprehensive consideration of the calculation of nutrient contamination. Subsequent, a new runoff reduced approach for load calculation based on measurements of runoff and concentrations is presented. This approach allows the calculation of yearly loads with higher precision compared with well-established approaches, if only a low number of concentration measurement is available. The loads calculated from runoff and concentration measurements were important for calibration and validation of nutrient input models and can help to improve there results.
2

Möglichkeiten und Grenzen bei der Modellierung von Nährstoffeinträgen auf Flussgebietsebene: Untersuchungen am Beispiel des Modells MONERIS

Zweynert, Ulrike 12 December 2008 (has links)
Modelle werden eingesetzt, um Menge und Herkunft der Stoffeinträge auf Flussgebietsebene zu analysieren. Aus den Ergebnissen der Modellierung lassen sich Handlungsempfehlungen zur Verbesserung der Gewässergüte ableiten. Für die Interpretation der Modellergebnisse sind Kenntnisse über die Genauigkeit und Aussagekraft der Ergebnisse notwendig. Das Modell MONERIS als konzeptionelles Modell für die Anwendung auf Flussgebietsebene wurde innerhalb der vorliegenden Arbeit in 5 europäischen Flusseinzugsgebieten angewandt. Sowohl mit verschiedenen Ansätzen aufbereitete Abflusswerte als auch unterschiedlich hoch aufgelöste Eingangsdaten führten bei der Modellierung zu Änderungen der berechneten Einträge und Frachten. Gezeigt wird, dass mit MONERIS sowohl mittlere Eintrags- und Frachtwerte für eine Periode von mehreren Jahren, als auch Werte für Einzeljahre berechnet werden können. Der Vergleich mit aus Konzentrations- und Abflussmessungen im Gewässer abgeleiteten Frachten wies Abweichungen von <30% auf. Bei der Modellierung von Einzeljahren konnten insbesondere die Jahre mit mittleren Niederschlagsbedingungen gut abgebildet werden. In Jahren mit hohen oder geringen Niederschlägen oder einer außergewöhnlichen Niederschlagsverteilung traten dagegen, bedingt durch die Kalibrierung der meisten Modellkoeffizienten für mittlere Abflussbedingungen von Perioden, Unter- oder Überschätzungen der gemessenen Frachten auf. Monatliche Einträge und Frachten wurden ebenfalls modelliert. Der Vergleich mit Messwerten zeigte hohe Abweichungen, sodass MONERIS für eine monatliche Berechnung noch weiterentwickelt werden muss. Dies betrifft vor allem die Genauigkeit der als Eingangsdaten verwendeten Abflüsse und der Abflusskomponenten sowie den in den Modellversionen vor 2008 verwendeten Retentionsansatz. Auch die räumliche Modellauflösung wurde untersucht und festgestellt, dass eine Modellierung mit MONERIS bis zu einer Auflösung von 1km² problemlos möglich ist. Die Schnittpunkte von Stoffeintragsmodellen mit Modellen aus der Siedlungswasserwirtschaft wurden durch einen Vergleich von MONERIS mit dem Modell STORM in einem stark urban geprägten Einzugsgebiet ermittelt. Obwohl die Unterschiede in den Modellansätzen deutlich wurden, konnte gezeigt werden, dass eine Ergänzung der beiden Modelltypen wünschenswert wäre. Abschließend wird ein neuer Ansatz für die Frachtberechnung aus Abfluss- und Konzentrationsmessungen vorgestellt, durch den die Genauigkeit der berechneten Jahresfrachten bei geringer Anzahl von Messwerten gegenüber etablierten Ansätzen erhöht werden kann. Da die aus Messwerten berechneten Frachten für die Modellkalibrierung und Validierung benötigt werden, kann so auch die Stoffeintragsmodellierung positiv beeinflusst werden. / Different models were used to analyse and calculate the amount and origin of the nutrient inputs into riverbasins. Recommended follow-up action can be derived from the model results to improve the river water quality. The interpretation of the modelling results requires the knowledge of the accurateness and the significance of the results. For the investigations, the MONERIS model as a conceptual model was applied in five European river catchments. Different approaches for data preparation as well as a different input data were resulting in a large variation of the calculated nutrient inputs and loads. It was shown, that the MONERIS model is applicable to calculate inputs and loads for periods of several years as well as for one year. In comparison with measured loads mean deviations less than 30% were found. Looking at a yearly timestep, the nutrient inputs and loads in years with mean precipitation conditions were well reproduced. Years with high or low precipitation tends to result in overor underestimation of the nutrient inputs and loads, caused by the calibration of the model coefficients for mean runoff conditions. Monthly inputs and loads were calculated with MONERIS for the first time. The comparison with measured loads shows high deviations. Model improvements have to bee made regarding runoff input values (and runoff components) and retention approach (in the model version before 2008). Furthermore the spatial model resolution was investigated. It could be shown, that the MONERIS model is applicable until a resolution of 1sq.km. In a further application, MONERIS was compared with the urban stormwater management model STORM. Even though there were differences in model approaches, it could be shown a relation between the models for a comprehensive consideration of the calculation of nutrient contamination. Subsequent, a new runoff reduced approach for load calculation based on measurements of runoff and concentrations is presented. This approach allows the calculation of yearly loads with higher precision compared with well-established approaches, if only a low number of concentration measurement is available. The loads calculated from runoff and concentration measurements were important for calibration and validation of nutrient input models and can help to improve there results.
3

Hydrologische Modellierung urbaner Nährstoffeinträge in Gewässer auf Flussgebietsebene / Hydrological modelling of nutrient imputs from urbanised areas in waterbodies

Biegel, Markus 17 December 2005 (has links) (PDF)
This thesis describes the conception and implementation of the hydrological model ArcEGMO-URBAN and its application to the basin of the Havel river in north-eastern Germany. The model has been developed in order to make up the balance of nitrogen and phosphorus inputs from point sources in urban areas on the scale of river basins. The nutrient input can be calculated with a high spatial resolution and according to its seasonal variation. At the same time, the impact of the rainfall on the nutrient input is being focused on in this project. ArcEGMO-URBAN models rainfall-runoff processes and pollution-transport processes in urban areas taking natural, technological and social parameters into consideration. Input data are meteorological and terrestrial data with a high spatiotemporal resolution as well as statistic data on the scale of municipalities. The digitally available spatial data are being analysed with GIS functions before the actual modelling and later merged to areas with similar attributes. Technological and social parameters are assigned to these areas which were derived from statistic data. The diversity of the input data and their high spatial resolution allow for the description of relevant processes differentiated on the scale of urban patches. The model considers different urban water technologies and their determined matter fluxes as well as different sewer systems. With regard to rainfall-runoff processes the following sub-processes are considered for this model: the runoff-generation and runoff-concentration on sealed surfaces, the runoff-transformation and combination with the dry weather flow in the sewer system, and the split-up of the runoff in retention tanks and waste water treatment plants. Referring to pollution-transport processes the following sub-processes are taken into account: the atmospheric pollution and surface pollution dependent on the type of land use, and the matter transport in the sewer system. The sub-processes of matter accumulation and matter erosion on the land surface can be calculated by using mean values of pollution or, more detailed, by using special functions for processes of accumulation as well as erosion. In order to guarantee an easy application, the model's conception allows the use of input data and parameters of varying accuracy. Both, either measurements or statistical data can be used for the calculation dependent on the available data. The model is programmed in "C" and, therefore, usable on every established computer system. The model's validation succeeds for several sub-processes as well as sub catchments. Results of the model's application in the basin of the Havel river illustrate that the model calculates similar annual matter loads when compared to established other models. Furthermore, the results show the potential of the model to calculate the seasonal variation of matter loads and to calculate scenarios by using GIS based parameters. ArcEGMO-URBAN therefore is a capable tool for the identification of nutrient input from point sources on the scale of river catchments. / Diese Arbeit beschreibt die Konzeption und Realisierung des Modells ArcEGMO-URBAN sowie die Modellanwendung im Flussgebiet der Havel. ArcEGMO-URBAN wurde entwickelt um die punktuell in Gewässer eingetragenen Frachten von Gesamtstickstoff und Gesamtphosphor aus urbanen Räumen auf der Ebene von Flussgebieten zu bilanzieren. Die Nährstoffeinträge werden mit einer hohen räumlichen Auflösung und in ihrer innerjährlichen Dynamik berechnet, wobei der Einfluss des Niederschlagsgeschehens auf die Stoffeinträge besonders thematisiert wird. ArcEGMO-URBAN modelliert die Niederschlags-Abfluss- und die Schmutz-Transport-Prozesse in urbanen Räumen unter Berücksichtigung von naturräumlichen, technologischen und sozialen Parametern. Eingangsgrößen sind meteorologische und terrestrische Daten mit einer hohen zeitlichen und räumlichen Auflösung sowie statistische Angaben auf Gemeindeebene. Die digital vorliegenden Flächendaten werden vor der Modellierung mittels GIS-Funktionen ausgewertet und zu Flächen mit gleichen Eigenschaften zusammengefasst. Diesen Flächen werden technologische und soziale Parameter zugeordnet, welche aus den statistischen Angaben abgeleitet wurden. Durch die hohe inhaltliche und räumliche Auflösung der Eingangsdaten können relevante Prozesse teilflächendifferenziert beschrieben werden. Es können sowohl unterschiedliche Wasserver- und -entsorgungstechnologien und die durch sie induzierten Stoffströme als auch unterschiedliche Kanalisationsverfahren berücksichtigt werden. Bezogen auf den Niederschlags-Abfluss-Prozess werden die Abflussbildung und Abflusskonzentration auf befestigten Flächen, die Abflusstransformation und Überlagerung mit dem Trockenwetterabfluss im Kanalnetz und die Abflussaufteilung an Sonderbauwerken bzw. Kläranlagen berechnet. Für die Berücksichtigung der Stoff-Transport-Prozesse werden die durch die Atmosphäre und spezifische Nutzungen bedingten Stoffeinträge sowie der durch die Kanalisation bestimmte Stofftransport berechnet. Die auf der Oberfläche stattfindenden Teilprozesse von Stoffakkumulation und -abtrag können über mittlere Verschmutzungswerte oder detailliert über Akkumulations- und Abtragsfunktionen berechnet werden. Um ein weites Anwendungsspektrum zu gewährleisten, ist das Modell so konzipiert, dass eine Parametrisierung mit Eingangsdaten unterschiedlicher Qualität möglich ist. Abhängig von der verfügbaren Datenbasis werden entweder konkrete Messwerte oder statistische Größen verwendet. Das Programm ist in "C" programmiert und damit auf jeder Rechnerarchitektur lauffähig. Die Validierung des Modells gelingt für einzelne Teilprozesse aber auch für Teilgebiete gut. Die Ergebnisse im Flussgebiet der Havel belegen, dass das Modell ähnliche jährliche Nährstofffrachten wie bereits eingeführte Modelle berechnet. Darüber hinaus zeigen die Ergebnisse das Potenzial des Modells, die innerjährliche Dynamik punktueller Stoffeinträge abzubilden und durch die GIS-gestützte Parametrisierung aufwandsarm Szenarien zu berechnen. Damit ist ArcEGMO-URBAN ein geeignetes Modell zur Bestimmung von Nährstoffeinträgen aus punktuellen Quellen auf der Ebene von Flussgebieten.
4

Hydrologische Modellierung urbaner Nährstoffeinträge in Gewässer auf Flussgebietsebene

Biegel, Markus 20 December 2005 (has links)
This thesis describes the conception and implementation of the hydrological model ArcEGMO-URBAN and its application to the basin of the Havel river in north-eastern Germany. The model has been developed in order to make up the balance of nitrogen and phosphorus inputs from point sources in urban areas on the scale of river basins. The nutrient input can be calculated with a high spatial resolution and according to its seasonal variation. At the same time, the impact of the rainfall on the nutrient input is being focused on in this project. ArcEGMO-URBAN models rainfall-runoff processes and pollution-transport processes in urban areas taking natural, technological and social parameters into consideration. Input data are meteorological and terrestrial data with a high spatiotemporal resolution as well as statistic data on the scale of municipalities. The digitally available spatial data are being analysed with GIS functions before the actual modelling and later merged to areas with similar attributes. Technological and social parameters are assigned to these areas which were derived from statistic data. The diversity of the input data and their high spatial resolution allow for the description of relevant processes differentiated on the scale of urban patches. The model considers different urban water technologies and their determined matter fluxes as well as different sewer systems. With regard to rainfall-runoff processes the following sub-processes are considered for this model: the runoff-generation and runoff-concentration on sealed surfaces, the runoff-transformation and combination with the dry weather flow in the sewer system, and the split-up of the runoff in retention tanks and waste water treatment plants. Referring to pollution-transport processes the following sub-processes are taken into account: the atmospheric pollution and surface pollution dependent on the type of land use, and the matter transport in the sewer system. The sub-processes of matter accumulation and matter erosion on the land surface can be calculated by using mean values of pollution or, more detailed, by using special functions for processes of accumulation as well as erosion. In order to guarantee an easy application, the model's conception allows the use of input data and parameters of varying accuracy. Both, either measurements or statistical data can be used for the calculation dependent on the available data. The model is programmed in "C" and, therefore, usable on every established computer system. The model's validation succeeds for several sub-processes as well as sub catchments. Results of the model's application in the basin of the Havel river illustrate that the model calculates similar annual matter loads when compared to established other models. Furthermore, the results show the potential of the model to calculate the seasonal variation of matter loads and to calculate scenarios by using GIS based parameters. ArcEGMO-URBAN therefore is a capable tool for the identification of nutrient input from point sources on the scale of river catchments. / Diese Arbeit beschreibt die Konzeption und Realisierung des Modells ArcEGMO-URBAN sowie die Modellanwendung im Flussgebiet der Havel. ArcEGMO-URBAN wurde entwickelt um die punktuell in Gewässer eingetragenen Frachten von Gesamtstickstoff und Gesamtphosphor aus urbanen Räumen auf der Ebene von Flussgebieten zu bilanzieren. Die Nährstoffeinträge werden mit einer hohen räumlichen Auflösung und in ihrer innerjährlichen Dynamik berechnet, wobei der Einfluss des Niederschlagsgeschehens auf die Stoffeinträge besonders thematisiert wird. ArcEGMO-URBAN modelliert die Niederschlags-Abfluss- und die Schmutz-Transport-Prozesse in urbanen Räumen unter Berücksichtigung von naturräumlichen, technologischen und sozialen Parametern. Eingangsgrößen sind meteorologische und terrestrische Daten mit einer hohen zeitlichen und räumlichen Auflösung sowie statistische Angaben auf Gemeindeebene. Die digital vorliegenden Flächendaten werden vor der Modellierung mittels GIS-Funktionen ausgewertet und zu Flächen mit gleichen Eigenschaften zusammengefasst. Diesen Flächen werden technologische und soziale Parameter zugeordnet, welche aus den statistischen Angaben abgeleitet wurden. Durch die hohe inhaltliche und räumliche Auflösung der Eingangsdaten können relevante Prozesse teilflächendifferenziert beschrieben werden. Es können sowohl unterschiedliche Wasserver- und -entsorgungstechnologien und die durch sie induzierten Stoffströme als auch unterschiedliche Kanalisationsverfahren berücksichtigt werden. Bezogen auf den Niederschlags-Abfluss-Prozess werden die Abflussbildung und Abflusskonzentration auf befestigten Flächen, die Abflusstransformation und Überlagerung mit dem Trockenwetterabfluss im Kanalnetz und die Abflussaufteilung an Sonderbauwerken bzw. Kläranlagen berechnet. Für die Berücksichtigung der Stoff-Transport-Prozesse werden die durch die Atmosphäre und spezifische Nutzungen bedingten Stoffeinträge sowie der durch die Kanalisation bestimmte Stofftransport berechnet. Die auf der Oberfläche stattfindenden Teilprozesse von Stoffakkumulation und -abtrag können über mittlere Verschmutzungswerte oder detailliert über Akkumulations- und Abtragsfunktionen berechnet werden. Um ein weites Anwendungsspektrum zu gewährleisten, ist das Modell so konzipiert, dass eine Parametrisierung mit Eingangsdaten unterschiedlicher Qualität möglich ist. Abhängig von der verfügbaren Datenbasis werden entweder konkrete Messwerte oder statistische Größen verwendet. Das Programm ist in "C" programmiert und damit auf jeder Rechnerarchitektur lauffähig. Die Validierung des Modells gelingt für einzelne Teilprozesse aber auch für Teilgebiete gut. Die Ergebnisse im Flussgebiet der Havel belegen, dass das Modell ähnliche jährliche Nährstofffrachten wie bereits eingeführte Modelle berechnet. Darüber hinaus zeigen die Ergebnisse das Potenzial des Modells, die innerjährliche Dynamik punktueller Stoffeinträge abzubilden und durch die GIS-gestützte Parametrisierung aufwandsarm Szenarien zu berechnen. Damit ist ArcEGMO-URBAN ein geeignetes Modell zur Bestimmung von Nährstoffeinträgen aus punktuellen Quellen auf der Ebene von Flussgebieten.

Page generated in 0.0273 seconds