• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 6
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 101
  • 101
  • 101
  • 28
  • 27
  • 24
  • 18
  • 15
  • 15
  • 14
  • 14
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Development of a Versatile High-Brightness Electron Impact Ion Source for Nano-Machining, Nano-Imaging and Nano-Analysis / Développement d'une source d'ions polyvalente à haute brillance basée sur l'impact électronique pour la nano-fabrication, la nano-imagerie et la nano-analyse

Castro, Olivier de 07 December 2016 (has links)
Les nano-applications utilisant des faisceaux d'ions focalisés nécessitent des sources d'ions à haute brillance avec une faible dispersion en énergie (ΔE) ce qui permet une excellente résolution latérale et un courant d'ions suffisamment élevé pour induire des vitesses d'érosion raisonnables et des rendements élevés d'émission électronique et ionique. Les objectifs de cette thèse sont le développement d'une source d'ions basée sur l'impact électronique ayant une brillance réduite Br de 10³ – 10⁴ A m⁻² sr ⁻ ¹ V⁻ ¹, une dispersion en énergie ΔE ≲ 1 eV et un choix polyvalent d'ions. Le premier concept évalué consiste à focaliser un faisceau d'électrons à une énergie de 1 keV entre deux électrodes parallèles distant de moins d'un millimètre. Le volume d'ionisation « micrométrique » est formé au-dessus d'une ouverture d'extraction de quelques dizaines de µm. En utilisant un émetteur d'électrons LaB₆ et une pression de 0.1 mbar dans la région d'ionisation, Br est proche de 2.10² A m⁻² sr ⁻ ¹ V ⁻ ¹ avec des tailles de source de quelques µm, des courants de quelques nA pour Ar⁺/Xe⁺/O₂ ⁺ et une dispersion en énergie ΔE < 0.5 eV. La brillance réduite Br est encore en dessous de la valeur minimum de notre objectif et la pression de fonctionnement très faible nécessaire pour l'émetteur LaB₆ ne peut être obtenue avec une colonne d'électrons compacte, donc ce prototype n'a pas été construit.Le deuxième concept de source d'ions évalué est basé sur l’idée d’obtenir un faisceau ionique à fort courant avec une taille de source et un demi-angle d’ouverture similaire aux résultats du premier concept de source, mais en changeant l’interaction électron-gaz et la collection des ions. Des études théoriques et expérimentales sont utilisées pour l’évaluation de la performance de ce deuxième concept et de son utilité pour les nano-applications basées sur des faisceaux d'ions focalisés. / High brightness low energy spread (ΔE) ion sources are needed for focused ion beam nano-applications in order to get a high lateral resolution while having sufficiently high ion beam currents to obtain reasonable erosion rates and large secondary electron/ion yields. The objectives of this thesis are: the design of an electron impact ion source, a reduced brightness Br of 10³ – 10⁴ A m⁻² sr⁻ ¹ V⁻ ¹ with an energy distribution spread ΔE ≲ 1 eV and a versatile ion species choice. In a first evaluated concept an electron beam is focussed in between two parallel plates spaced by ≲1 mm. A micron sized ionisation volume is created above an extraction aperture of a few tens of µm. By using a LaB₆ electron emitter and the ionisation region with a pressure around 0.1 mbar, Br is close to 2.10² A m⁻² sr ⁻ ¹ V ⁻ ¹ with source sizes of a few µm, ionic currents of a few nA for Ar⁺/Xe⁺/O₂ ⁺ and the energy spread being ΔE < 0.5 eV. The determined Br value is still below the minimum targeted value and furthermore the main difficulty is that the needed operation pressure for the LaB₆ emitter cannot be achieved across the compact electron column and therefore a prototype has not been constructed. The second evaluated source concept is based on the idea to obtain a high current ion beam having a source size and half-opening beam angle similar to the first concept, but changing the electron gas interaction and the ion collection. Theoretical and experimental studies are used to evaluate the performance of this second source concept and its usefulness for focused ion beam nano-applications.
62

Ion beam induced structural modifications in nano-crystalline permalloy thin films

Roshchupkina, Olga 02 May 2013 (has links)
In the last years, there is a rise of interest in investigation and fabrication of nanometer sized magnetic structures due to their various applications (e.g. for data storage or micro sensors). Over the last several decades ion beam implantation became an important tool for the modification of materials and in particular for the manipulation of magnetic properties. Nanopatterning and implantation can be done simultaneously using focused-ion beam (FIB) techniques. FIB implantation and standard ion implantation differ in their beam current densities by 7 orders of magnitude. This difference can strongly influence the structural and magnetic properties, e.g. due to a rise of the local temperature in the sample during ion implantation. In previous investigations both types of implantation techniques were studied separately. The aim of the current research was to compare both implantation techniques in terms of structural changes and changes in magnetic properties using the same material system. Moreover, to separate any possible annealing effects from implantation ones, the influence of temperature on the structural and magnetic properties were additionally investigated. For the current study a model material system which is widely used for industrial applications was chosen: a 50 nm thick non-ordered nano-crystalline permalloy (Ni81Fe19) film grown on a SiO2 buffer layer based onto a (100)-oriented Si substrate. The permalloy films were implanted with a 30 keV Ga+ ion beam; and also a series of as-deposited permalloy films were annealed in an ultra-high vacuum (UHV) chamber. Several investigation techniques were applied to study the film structure and composition, and were mostly based on non-destructive X-ray investigation techniques, which are the primary focus of this work. Besides X-ray diffraction (XRD), providing the long-range order crystal structural information, extended X-ray absorption fine structure (EXAFS) measurements to probe the local structure were performed. Moreover, the film thickness, surface roughness, and interface roughness were obtained from the X-ray reflectivity (XRR) measurements. Additionally cross-sectional transmission electron microscope (XTEM) imaging was used for local structural characterizations. The Ga depth distribution of the samples implanted with a standard ion implanter was measured by the use of Auger electron spectroscopy (AES) and Rutherford backscattering (RBS), and was compared with theoretical TRIDYN calculation. The magnetic properties were characterized via polar magneto-optic Kerr effect (MOKE) measurements at room temperature. It was shown that both implantation techniques lead to a further material crystallization of the partially amorphous permalloy material (i.e. to an increase of the amount of the crystalline material), to a crystallite growth and to a material texturing towards the (111) direction. For low ion fluences a strong increase of the amount of the crystalline material was observed, while for high ion fluences this rise is much weaker. At low ion fluences XTEM images show small isolated crystallites, while for high ones the crystallites start to grow through the entire film. The EXAFS analysis shows that both Ni and Ga atom surroundings have a perfect near-order coordination corresponding to an fcc symmetry. The lattice parameter for both implantation techniques increases with increasing ion fluence according to the same linear law. The lattice parameters obtained from the EXAFS measurements for both implantation types are in a good agreement with the results obtained from the XRD measurements. Grazing incidence XRD (GIXRD) measurements of the samples implanted with a standard ion implanter show an increasing value of microstrain with increasing ion fluence (i.e. the lattice parameter variation is increasing with fluence). Both types of implantation result in an increase of the surface and the interface roughness and demonstrate a decrease of the saturation polarization with increasing ion fluence. From the obtained results it follows that FIB and standard ion implantation influence structure and magnetic properties in a similar way: both lead to a material crystallization, crystallite growth, texturing and decrease of the saturation polarization with increasing ion fluence. A further crystallization of the highly defective nano-crystalline material can be simply understood as a result of exchange processes induced by the energy transferred to the system during the ion implantation. The decrease of the saturation polarization of the implanted samples is mainly attributed to the simple presence of the Ga atoms on the lattice sites of the permalloy film itself. For the annealed samples more complex results were found. The corresponding results can be separated into two temperature regimes: into low (≤400°C) and high (>400°C) temperatures. Similar to the implanted samples, annealing results in a material crystallization with large crystallites growing through the entire film and in a material texturing towards the (111) direction. The EXAFS analysis shows a perfect near-order coordination corresponding to an fcc symmetry. The lattice parameter of the annealed samples slightly decreases at low annealing temperatures, reaches its minimum at about ~400°C and slightly rises at higher ones. From the GIXRD measurements it can be observed that the permalloy material at temperatures above >400°C reaches its strain-free state. On the other hand, the film roughness increases with increasing annealing temperature and a de-wetting of the film is observed at high annealing temperatures. Regardless of the material crystallization and texturing, the samples annealed at low temperatures demonstrate no change in saturation polarization, while at high temperatures a rise by approximately ~15% at 800°C was observed. The rise of the saturation polarization at high annealing temperatures is attributed to the de-wetting effect.
63

Can Hydrodynamic Electrons Exist in a Metal? A Case Study of the Delafossite Metals PdCoO2 and PtCoO2

Nandi, Nabhanila 09 August 2019 (has links)
In an electron fluid, both resistive and viscous mechanisms can be present. In systems with perfect translational invariance momentum is a conserved quantity, and as the electrons carry both charge and momentum, the current cannot decay. Predictions from theories at the particle physics-condensed matter physics interface using the `AdS/CFT' correspondence suggest that hydrodynamic charge flow might exist in some exotic metallic states. In the high-Tc cuprates the T-linear resistivity in the strange metal regime is conjectured to be due to hydrodynamic effects. In this dissertation, I start out drawing a theoretical outline of the hydrodynamic theory of electron transport in solids. In the search for a high purity metal that can host such a hydrodynamic electron transport, we looked at the non-magnetic delafossite oxides PdCoO2 and PtCoO2, which have the highest conductivities of any known oxides, and whose key properties I will review. As the signatures of viscosity can only be realised in transport through boundary scattering, the samples had to be taken down to the mesoscopic limit, where the momentum conserving and relaxing scattering mean free paths of the material are comparable to the channel width. I will discuss the focussed ion beam (FIB) micro-structuring technique that I have implemented to fabricate the mesoscopic devices. To interpret the transport in the mesoscopic regime, a comprehensive understanding of the bulk transport is first necessary and I will present my measurements of the magnetoresistance and Hall effect in both materials, which show deviations from the predictions of standard models highlighting some intriguing physics even in the bulk limit. Finally, I will present the data from magnetotransport measurements at the mesoscopic limit. Magnetic field introduces a variable length scale, the cyclotron radius, in the system which can be used to tune through different transport regimes. I will discuss the ballistic and hydrodynamic signatures in the transport that becomes accessible through magnetic field tuning in the mesoscopic samples of the delafossites PdCoO2 and PdCoO2.
64

Probing Hund’s-Metal Physics through the Hall Effect in Microstructured Sr₂RuO₄ under Uniaxial Stress

Yang, Po-Ya 01 April 2022 (has links)
Uniaxial stress is a powerful technique to tune the electronic structure of very pure materials. The novel piezoelectric-based techniques developed by our group, which allow application of large and homogeneous uniaxial pressure in a continuously-tunable manner, make uniaxial pressure an independent axis in the parameter space for the study of quantum materials. Many exciting experiments have been performed that combine different measurement methods with this uniaxial stress technique in the past few years. In this thesis, I demonstrate the first electrical transport measurement under uniaxial pressure of a free-standing microstructure single-crystalline sample patterned by focused ion beam (FIB) milling. With the microstructuring technique that I developed, the transport properties transverse to the force direction can be more accurately probed. The ability to resolve the anisotropy introduced by the uniaxial pressure lets us have a better understanding of how the electronic structure of Sr₂RuO₄ changes under uniaxial stress. Moreover, the microstructure technique opens new roads for smaller crystals (∼ 100 µm) to be studied under uniaxial pressure. In addition, higher stresses and better sample homogeneity could be achieved by working with smaller samples. For Sr₂RuO₄, one of the three Fermi-surface sheets can be driven through a Lifshitz transition by applying uniaxial stress along the [100] direction. Superconductivity and resistivity have been observed to be strongly enhanced at the singularity. In addition, a spin-density wave (SDW) has been observed at stresses beyond the Lifshitz transition. Measurement of the Hall effect under uniaxial stress allows us to probe Hund’s metal physics in Sr₂RuO₄. The Hall coefficient of unstressed Sr₂RuO₄ goes through two sign reversals, at 30 K and 120 K. Under the Hund’s metal scenario, this temperature dependence has been proposed to result from orbital differentiation of the inelastic scattering rate, which is a key property expected of Hund’s metals. In the present study, it is shown that at a temperature where electron-electron scattering dominates (≳ 5 K), the Hall coefficient becomes less electron-like while approaching the VHS, which is consistent with increased scattering in the d_xy band. Beyond the transition, the Hall coefficient becomes much more electron-like, which is opposite to expectations from the change in Fermi surface topology, but can be explained by a combination of Hund’s metal physics and strong suppression in the d_xy scattering rate. At very low temperature (0.5 K), the Hall coefficient is essentially unchanged across the Lifshitz transition, despite the change in the Fermi-surface topology. In contrast to the longitudinal resistivity that has a strong peak at the VHS but does not respond to the SDW, the resistance transverse to the force direction shows a strong response to the SDW, but only a small response at the VHS. In addition, I obtain ρ(T) at the Lifshitz transition below Tc by subtracting off the magnetoresistance and find that T² ln(1/T) fits better than T^3/2, which suggests a saddle point rather than an extended saddle point at the VHS.:1. Introduction to Sr2RuO4 1.1. Normal-State Properties Van Hove Singularity and Lifshitz Transition in Sr2RuO4 1.2. Hall Effect in Sr2RuO4 Weak-field Hall Coefficient Experimental Hall Coefficient in Sr2RuO4 and Related Systems 1.3. Hund’s Metal Scenario Dynamical Mean-Field Theory Experimental Evidence for Orbital Differentiation in Sr2RuO4 Hall Coefficient of Sr2RuO4 within Hund’s Metal Scenario 1.4 Uniaxial-Pressure Projects on Sr2RuO4 2. Experimental Setup 2.1. Stress and Strain 2.2. Uniaxial Stress Technique Uniaxial-Stress Cell Sample Carrier 2.3. Imperfections of the Stress Cells 2.4. Sample Preparation Needle Sample Preparation Microstructure Sample Preparation Comparison of the Two Samples 2.5. Measurement Setup 3He Cryostat Transport Measurement Setup 3. Hall Coefficient and Resistivity Measurements 3.1. Basics of Resistivity Measurement Stress Ramps 3.2. Basics of Hall Measurement Setup Field Dependence of Hall Resistivity Temperature Dependence of Hall Coefficient 3.3. Stress Ramps under Constant Magnetic Field 3.4. Stress Dependence of Hall Coefficient and Resistivity 3.5. Resistivity Measurements below Tc 3.6. Field Sweeps within the Magnetic Phase 3.7. Summary 4. Measurements Transverse to the Stress Axis 4.1. Setup for Transport Measurements Transverse to the Uniaxial Stress 4.2. Simulations Based on Finite Element Method 4.3. Resistance Measurements Transverse to Applied Stress 4.4. Summary 5. Data Analysis and Discussion 5.1. A Tight-Binding Model under Uniaxial Pressure 5.2. Analysis of Hall Coefficient across the Lifshitz Transition Hall Coefficient Analysis under the Isotropic-l or Isotropic-τ Approximations Hall Coefficient Analysis under Hund’s Metal Scenario 5.3. Magnetoresistance Subtraction in Temperature Ramps 5.4. Transport Properties at 5 K 5.5. Summary 6. Conclusions and Outlook Appendices A. Si-Gap-Platform Microstructure Project A.1. Si-Gap Platform A.2. Sample Preparation with PFIB-Microstructuring A.3. Microstructure Stress Cells B. Other results B.1. Hall Effect from the Hall Pair 2 B.2. Magnetoresistance in Longitudinal and Transverse Configurations B.3. Toward -1.5 GPa B.4. Comparison of RH(T) in Sr2RuO4 Compressed along [100] Direction and YBa2Cu3O6.67 Compressed along the b-axis Bibliography
65

Application des faisceaux d'ions focalisés à la création de centres NV du diamant. Caractérisation de ces faisceaux d'ions issus d'une source plasma. / Application of focused ion beams to the creation of NV centers in diamond. Characterization of these ion beams from a plasma source.

Renaud, Justine 24 June 2019 (has links)
Depuis plus de 45 ans, les colonnes à faisceaux d'ions focalisés FIB à base de source à métal liquide (Ga) sont utilisées pour l'élaboration, la modification ou l'analyse de nanostructures. Beaucoup plus récemment, moins de 10 ans, les sources plasma sont intégrées dans les FIB afin de répondre aux besoins d'analyse de défaillance mais également de préparation d'échantillons. Ce marché des FIB plasma est en forte progression ces derniers années et s'accompagne d'une amélioration permanente des spécifications de cette technologie encore jeune. Il est donc nécessaire de caractériser au mieux ces sources afin de pouvoir améliorer l'optique associée. Dans cette thèse, nous présentons le développement d'une nouvelle colonne FIB fonctionnant avec une source d'ions plasma, dédiée à la création de centres NV, ainsi que le développement d'un outil permettant de caractériser les performances de cette source.Étant donné le contexte de ces travaux, la première partie du manuscrit est consacrée à la présentation de la technologie FIB, de son fonctionnement et de ses applications. Dans le second chapitre, nous présentons le développement d'une colonne FIB dédiée à l'implantation d'ions azote pour la création contrôlée de centres colorés NV dans des diamants. Nous commençons par introduire les propriétés uniques des centres NV ainsi que les méthodes usuelles pour leur création. Nous présentons ensuite les différentes étapes de la caractérisation de cette colonne FIB. Les implantations réalisées au cours de ce travail ont pu être utilisées pour le développement d'une nouvelle application des diamants dopés.Dans le dernier chapitre du manuscrit, nous nous intéressons à la conception d'un banc de test permettant d'obtenir les paramètres clés de la source d'ions, à savoir la dispersion en énergie et l'émittance. Les méthodes usuelles de mesure de ces paramètres sont présentées puis le fonctionnement du banc de test est entièrement décrit. Nous présentons ensuite les mesures effectuées avec des faisceaux d'ions xénon puis oxygène. Certains paramètres de la source d'ions plasma ont ainsi été obtenus. / For more than 45 years, focused ion beams FIB columns based on liquid metal ion sources (Ga) have been used for the development, modification or analysis of nanostructures. Much more recently, less than 10 years ago, plasma sources are integrated in FIBs to meet the needs of failure analysis as well as sample preparation. This plasma FIB market has grown strongly in recent years and is accompanied by a permanent improvement of the specifications of this young technology. Therefore, it is necessary to characterize these sources in order to improve the associated optics. In this thesis, we present the development of a new FIB column working with a plasma ion source, dedicated to the creation of NV centers, as well as the development of a system dedicated to the characterization of the performances of this source.Given the context of this work, the first part of the manuscript is dedicated to the presentation of FIB technology, its operation and its applications. In the second chapter, we present the development of a FIB column dedicated to the implantation of nitrogen ions for the controlled creation of NV color centers in diamonds. We begin by introducing the unique properties of NV centers as well as the usual methods for their creation. Then we present the different steps of the characterization of this FIB column. The implantations carried out during this work have been used for the development of a new application of doped diamonds.In the last chapter of the thesis, we are interested in designing a test bench to obtain the key parameters of the ion source, namely energy dispersion and emittance. The usual methods for measuring these parameters are presented and the operation of the test bench is fully described. Then we then present the measurements made with beams of xenon ions and oxygen ions. Some parameters of the plasma ion source have thus been obtained.
66

Deep fluid characteristics in the subduction zone: A window from metamorphic quartz veins / 変成石英脈を用いた沈み込み帯深部流体組成の研究

Yoshida, Kenta 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18806号 / 理博第4064号 / 新制||理||1585(附属図書館) / 31757 / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)教授 平島 崇男, 教授 大沢 信二, 准教授 河上 哲生 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
67

Advanced Focused Ion Beam: Preparation Optimization and Damage Mitigation

Huang, Jin 10 April 2019 (has links)
Focused Ion Beam (FIB) is an important analytical and sample modification technique in the field of electron and ion microscopy. It has been widely used in different kinds of applications including semiconductor device failure analysis, material science research, nanoscale 3D tomography, as well as microstructure prototyping and surface modification. Recent developments from the rapid growing industry and our frontier research have posted new challenges on the FIB technology itself. Higher resolution has been realized by state-of-the-art hardware infrastructures and less sample destruction has been achieved by efficient operation recipes. In this doctoral thesis, a study of advanced Focused Ion Beam sample preparation is presented, with the goal to prepare samples with low or no damage. The study is divided into two aspects according to various aspects in the FIB applications: sample damage and in-situ preparation. In the first aspect, sample damage, namely amorphization, ion implantation and FIB milling rate are investigated on crystalline silicon specimens with a gallium FIB tool. To study the ion-beam induced amorphous layer thickness under certain conditions, silicon specimens were prepared by FIB into specific geometry, so that the induced amorphous layer can be imaged and the thickness can be determined quantitatively using Transmission Electron Microscopy (TEM). Atom Probe Tomography (APT) was carried out to study the implanted ion concentration of gallium FIB prepared silicon specimens. In addition, the gallium FIB milling rate was also studied for a silicon substrate using Scanning Electron Microscopy (SEM). These experimental results provide detailed information of beam-sample interactions from the FIB sample preparation. In order to gain a systematic understanding of the processes, as well as to be able to predict the outcome of a specific FIB recipe, a physics model and an adapted algorithm (TRIDYN) based on Binary Collision Approximation (BCA) were used for the simulation of FIB processes. The predicted results based on simulations were compared with experiments. The proposed model was successfully validated by the experimental results, i.e., the TRIDYN algorithm has the capability to provide predictions for the multi- step FIB sample preparation process and the respective recipes. The other aspect involves a novel design of a hardware configuration of a SEM/FIB system add-on to perform in-situ surface modification tasks such as argon ion polishing of specimens. This Beam Induced Polishing System (BIPS) overcomes the disadvantages that some of the ex-situ methods have, and it completes some of the advanced FIB recipes for extremely thin and pristine specimens. In the thesis, the functionality of a BIPS system is explained in detail, and first experimental results are shown to demonstrate the proof of concept of the system. To summarize, this doctoral thesis presents an adapted algorithm, which is validated by experiments, to simulate the multi-step Focused Ion Beam process for recipes of low- damage sample preparation; A novel in-situ experiment system BIPS is also introduced, providing an option to complement SEM/FIB systems for advanced FIB sample preparation recipes.
68

DYNAMIC FAILURE OF POLYMER BONDED EXPLOSIVE SYSTEMS: FROM IDEALIZED SINGLE CRYSTAL TO VARIATIONS OF THE TRADITIONAL PARTICULATE REINFORCED COMPOSITE

Kerry Ann M Stirrup (16405512) 24 July 2023 (has links)
<p>  </p> <p>Polymer bonded explosives (PBX) are a particle reinforced composite containing a high solids loading of explosive particulates bound in a polymer matrix. Commercially produced energetic particulates contain some percentage of flaws in the form of contaminants, porosity, and preexisting fractures. Additional large-scale porosity within the composite is generated during PBX formulation. The introduction of novel additive manufacturing techniques to the energetics field alters the known composite structure and introduces a porosity variable that has not been fully characterized. Porosity collapse during deformation is believed to be a predominant mechanism for hotspot formation, which dominates shock initiation behaviors. These phenomena are difficult to experimentally characterize due to inherent small spectral and temporal scales, and as such numerical and computational models are relied upon to inform fundamental physics. Experimental characterization of the behaviors of energetic materials during deformation is necessary to better inform computational studies and improve our understanding of hotspot formation mechanisms. </p> <p>This dissertation experimentally evaluates the high-rate deformation of porosity in individual explosive particulates and within the overall composite structure. This has included the development of a novel micromachining technique for pore generation in energetic single crystals using the focused ion beam (FIB), resulting in precise and controllable porosity generation that is easily reproducible in collaboration with computational studies. FIB was shown to be an effective pore generation technique, verified by assessing surface roughness and pore quality compared to contemporary manufacturing methods. Three experimental subsets are evaluated: surface cracks in HMX single crystals, polygonal pores in HMX single crystals, and large-scale porosity variations in mock vibration assisted print (VAP) produced composites of borosilicate glass beads and Sylgard 184® binder. A single stage light gas gun was used to impact the samples at 400 m/s and the impact event and resultant material response were observed in real time using x-ray phase contrast imaging (PCI). Machined surface cracks were shown to have negligible effect on the final fracture behaviors of HMX crystals. In polygonal pores fractures were shown to originate due to stress concentration during impact followed by otherwise expected brittle fracture behaviors. For wedge-like pores, the shockwave culminates on the front face of the pore and contributed to early fracture in some samples as well as a consistent open fracture opposite the impact along the shockwave direction in later stages of impact. For the blunt rectangular-like pores two differing behaviors were observed, wherein either the pore condensed and fracture at the pore was not seen during the impact event or large open fractures formed at the pore corners opposite the shockwave. The variance in response is attributed to the energy of fracture dissipating somewhere else in the material bulk, like the behaviors observed in the milled slot samples. Finally, additively manufactured PBX deformation behaviors were observed to be dominated by the collapse of the existing ordered porosity in the bulk which occurred at an increased rate relative to the bulk material compression. This resulted in a three-stage progression of deformation, consisting of a rapid collapse of large-scale ordered porosity, followed by the densification of the remaining features, and ultimately ending in compaction of the bulk as the impact projectile fully compressed the samples. Future work includes exploration of further FIB produced pore effects on dynamic fractures, evaluation of printed material deformation behaviors at additional rates, as well as application and evaluation of additional VAP printed material formulations.  </p>
69

3C-SiC Multimode Microdisk Resonators and Self-Sustained Oscillators with Optical Transduction

Zamani, Hamidreza 03 June 2015 (has links)
No description available.
70

Electronic and Optical Properties of Defects at Metal-ZnO Nanowire Contacts

Cox, Jonathan Wesley 25 May 2017 (has links)
No description available.

Page generated in 0.0701 seconds