• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ultraprecise nanofabrication with extremely low dose focused ion beams

Habibi, Sina January 2014 (has links)
No description available.
2

Focused ion beam milled magnetic cantilevers

Fraser, Alastair Edward. January 2010 (has links)
Thesis (M. Sc.)--University of Alberta, 2010. / Title from pdf file main screen (viewed on June 24, 2010). A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Physics, Department of Physics, University of Alberta. Includes bibliographical references.
3

Development of an automated characterization-representation framework for the modeling of polycrystalline materials in 3D

Groeber, Michael Anthony, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 216-225).
4

Symmetric Near-Field Probe Design and Comparison to Asymmetric Probes

Doughty, Jeffrey Jon 01 January 2010 (has links)
Tip Enhanced Near-field Optical Microscopy (TENOM) is a method for optically imaging at resolutions far below the diffraction limit. This technique requires optical nano-probes with very specialized geometries, in order to obtain large, localized enhancements of the electromagnetic field, which is the driver behind this imaging method. Traditional methods for the fabrication of these nano-probes involve electrochemical etching and subsequent FIB milling. However, this milling process is non-trivial, requiring multiple cuts on each probe. This requires multiple rotations of the probe within the FIB system, which may not be possible in all systems, meaning the sample must be removed from vacuum, rotated by hand and placed back under vacuum. This is time consuming and costly and presents a problem with reproducibility. The method presented here is to replace multiple cuts from a side profile with a small number of cuts from a top down profile. This method uses the inherent imaging characteristics of the FIB, by assigning beam dwell times to specific locations on the sample, through the use of bitmap images. These bitmaps are placed over the sample while imaging and provide a lookup table for the beam while milling. These images are grayscale with the color of each pixel representing the dwell time at that pixel. This technique, combined with grayscale gradients, can provide probes with a symmetric geometry, making the system polarization independent.
5

Optical studies of focused ion beam fabricated GaN microstructures andnanostructures

Wang, Xiaohu, 王小虎 January 2011 (has links)
In this thesis, Gallium Nitride (GaN) micro- and nanostructures were fabricated based on focused ion beam (FIB) milling. The starting wafer is an epitaxial structure containing InGaN/GaN multi-quantum wells. High crystal quality structures such as the nano-cone, nanopillar array and single pillar were fabricated based on the FIB method. During the fabrication process, various approaches were designed to minimize FIB damage caused by Gallium ion bombardment. The fabrication process for nano-cone is a combination of mask preparation by FIB with subsequent reactive ion etching (RIE). For fabricating nanopillar arrays, the nanopillars were patterned directly using FIB with an optimized beam current followed by wet etching process to remove the damage. On the other hand, the single pillar is achieved by gradually decreasing the ion beam current as the diameter of the pillar becomes smaller. The first order Raman spectra for the nanopillar array reveal a strong additional peak when the diameter of the nanopillars is less than 220 nm. This peak can also be observed in GaN pillars without MQW and is clearly assigned to the surface optical (SO) mode originated from the A1 phonon in wurtzite GaN. The frequency of this SO mode is found to be sensitive with the diameter and surface roughness of the nanopillars. Temperature-variable photoluminescence (PL) measurements show that a broadband emission in the as-grown sample split into the two well-resolved bands for nanopillars and the emission band at the higher energy side quickly thermally quenched. Room temperature PL measurements on the single pillars exhibit an increasing blue-shift of the peak emission with the decreasing of the pillar diameter. Additional simulation data and excitation power dependent PL studies confirm the observation of strain relaxation in the pillar’s MQW due to FIB fabrication. The temperature variable PL on the single pillar shows a monotonous blue shift as the temperature arises to 300 K. / published_or_final_version / Electrical and Electronic Engineering / Master / Master of Philosophy
6

Characterization of the Local Structure and Composition of Low Dimensional Heterostructures and Thin Films

Ditto, Jeffrey 27 October 2016 (has links)
The observation of graphene’s extraordinary electrical properties has stirred great interest in two dimensional (2D) materials. The rapid pace of discovery for low dimensional materials with exciting properties continue with graphene allotropes, multiple polymorphs of borophene, germanene, and many others. The future of 2D materials goes beyond synthesis and characterization of free standing materials and on to the construction of heterostructures or sophisticated multilayer devices. Knowledge about the resulting local structure and composition of such systems will be key to understanding and optimizing their performance characteristics. 2D materials do not have a repeating crystal structure which can be easily characterized using bulk methods and therefore a localized high resolution method is needed. Electron microscopy is well suited for characterizing 2D materials as a repeating coherent structure is not necessary to produce a measureable signal as may be the case for diffraction methods. A unique opportunity for fine local scale measurements in low dimensional systems exists with a specific class of materials known as ferecrystals, the rotationally disordered relative of misfit layer compounds. Ferecrystals provide an excellent test system to observe effects at heterostructure interfaces as the whole film is composed of interdigitated two dimensional layers. Therefore bulk methods can be used to corroborate local scale measurements. From the qualitative interpretation of high resolution scanning transmission electron microscope (STEM) images to the quantitative application of STEM energy dispersive X-ray spectroscopy (EDX), this thesis uses numerous methods electron microscopy. The culmination of this work is seen at the end of the thesis where atomically resolved STEM-EDX hyperspectral maps could be used to measure element specific atomic distances and the atomically resolved fractional occupancies of a low dimensional alloy. These local scale measurements are corroborated by additional experimental data. The input of multiple techniques leads to improved certainty in local scale measurements and the applicability of these methods to non-ferecrystal low dimensional systems.
7

Development of a Primary Ion Column for Mass Spectrometry-Based Surface Analysis

Villacob, Raul A 01 July 2016 (has links)
Secondary Ion Mass Spectrometry (SIMS) is a powerful technique for high spatial resolution chemical mapping and characterization of native surfaces. The use of massive cluster projectiles has been shown to extend the applicable mass range of SIMS and improve secondary ion yields 100 fold or beyond. These large projectiles however, present a challenge in terms of focusing due to the initial spatial and kinetic energy spreads inherent to their generation. In the present work, we describe the development and construction of a novel primary ion (PI) column employing a gold nanoparticle – liquid metal ion source (AuNP-LMIS) and the coupling to ultrahigh resolution mass spectrometers (e.g., Fourier Transform Ion Cyclotron Resonance Mass Spectrometer, FT-ICR MS) for accurate chemical characterization of complex biological surfaces. This work describes the ion dynamics, development and the experimental characterization of the AuNP-LMIS.
8

Sample size effects related to nickel, titanium and nickel-titanium at the micron size scale

Norfleet, David Matthew, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 162-169).
9

Growth and characterization of silicon and germanium nanowhiskers

Kramer, Andrea 03 April 2009 (has links)
Die vorliegende Dissertation befasst sich mit dem Wachstum und der Charakterisierung von Silizium- und Germanium-Nanodrähten. Diese Strukturen gelten als aussichtsreiche Komponenten für zukünftige Bauelemente. Für die Anwendung ist die genaue Kenntnis der Größe, der kristallographischen Orientierung und der Position der Nanodrähte erforderlich. Ziel dieser Arbeit war daher die Untersuchung von Si- und Ge-Nanodrähten im Hinblick auf ihre Größe, Orientierung und Position. Die Herstellung erfolgte durch Physikalische Gasphasenabscheidung (PVD) im Ultrahochvakuum nach dem Vapor-Liquid-Solid (VLS)-Verfahren, das auf dem Wachstum aus Lösungsmitteltröpfchen basiert. Die Größe der Nanodrähte konnte im Falle von Silizium auf Si(111) mit Gold als Lösungsmittel durch die Parameter des Experiments reproduzierbar bestimmt werden. Höhere Goldbedeckung und höhere Substrattemperaturen führten zu Tröpfchen mit größerem Duchmesser und somit zu dickeren Drähten. Längere Si-Verdampfungszeiten und höhere Si-Verdampfungsraten führten zu längeren Drähten. Dünnere Drähte wuchsen schneller als dickere. Als zweites Lösungsmittel wurde Indium untersucht, da es sich im Vergleich zu Gold nicht nachteilig auf die elektronischen Eigenschaften von Silizium auswirkt. Basierend auf den Ergebnissen zur Tröpfchenbildung konnten die besseren Wachstumsresultate mit Gold erklärt werden. Germanium-Nanodrähte, die aus Goldtröpfchen auf Ge(111) gezüchtet wurden, zeigten im Gegensatz zu den Si-Nanodrähten nicht die kristallographische [111]-Orientierung des Substrates, sondern eine -Orientierung, was durch Berechnungen von Keimbildungsenergien auf verschiedenen Kristallflächen erklärt werden konnte. Zur Anordnung von Metalltröpfchen und damit von Nanodrähten wurden Substrate mithilfe von fokussierten Ionenstrahlen (FIB) vorstrukturiert, um die Tröpfchenbildung an bestimmten Stellen zu begünstigen. Es gelang, aus angeordneten Goldtröpfchen epitaktisch gewachsene Si- und Ge-Nanodrähte zu züchten. / This dissertation deals with the growth and the characterization of silicon and germanium nanowhiskers, also called nanorods or nanowires. The investigation of these structures is of great interest as they represent promising building blocks for future electronic devices. With regard to a possible application, the knowledge of size, crystallographic orientation and position of the nanowhiskers is essential. The purpose of this work was, therefore, to investigate the growth of Si and Ge nanowhiskers with regard to their size, orientation and position. The nanowhiskers were grown via physical vapor deposition (PVD) in ultra-high vacuum using the vapor-liquid-solid (VLS) mechanism which is based on growth from solution droplets. The size of the nanowhiskers could be reproducibly determined by the experimental parameters in the case of Si nanowhiskers on Si(111) with gold as the solvent. A higher gold coverage as well as a higher substrate temperature led to larger droplet diameters and thus to thicker whiskers. A longer silicon evaporation time and a higher silicon rate led to longer whiskers. Thinner whiskers grew faster than thicker ones. A second material used as the solvent was indium as it is more suitable for electronic application compared to gold. Based on results of droplet formation of the two solvents on silicon, the better results of whisker growth using gold could be explained. Ge nanowhiskers grown from gold droplets on Ge(111) did not show the [111] orientation of the substrate as in the case of Si nanowhiskers on Si(111) but a orientation. By calculating nucleation energies on different crystal facets, the experimental findings could be explained. To position nanodroplets of the solvent material and thus to obtain a regular arrangement of nanowhiskers, substrates were pre-structured with nanopores by focused ion beams (FIB). Silicon and germanium nanowhiskers could be epitaxially grown from ordered arrays of gold droplets.

Page generated in 0.0588 seconds