Spelling suggestions: "subject:"enfonction variance"" "subject:"dejonction variance""
1 |
Contributions théoriques et pratiques aux familles exponentiellesKokonendji, Célestin 02 December 2004 (has links) (PDF)
Les familles exponentielles de lois de probabilité offrent une panoplie de modèles très utiles en statistique ainsi qu'en probabilités. Les travaux résumés dans ce mémoire s'intéressent à leurs caractérisations et interprétations probabilistes, ainsi que leurs applications en statistique. Dans la première partie, une nouvelle classe de familles exponentielles naturelles (FEN) est introduite puis décrite complétement. Elle s'appuie sur une transformation dite de Lindsay des FEN de fonctions variance cubiques. Des interprétations probabilistes par les lois de temps de frappe des processus stochastiques sont données. Enfin, à travers une notion de d-pseudo-orthogonalité des polynômes associés à une densité de FEN, plusieurs caractérisations des FEN de fonctions variance polynomiales de degré 2d-1 sont données pour d=2,3,... . La deuxième partie est consacrée au déterminant des matrices de moments des lois multidimensionnelles. Deux aspects sont principalement explorés : le premier a trait à une caractérisation du déterminant de la hessienne d'une transformée de Laplace et ses conséquences ; le second concerne de meilleurs estimateurs de la variance généralisée ou du déterminant de la matrice de variance-covariance. Une nouvelle caractérisation des FEN Poisson-gaussiennes moyennant la variance généralisée est alors donnée. La troisième partie étudie des modèles exponentiels, de plus en plus appropriés et complémentaires, pour l'analyse statistique des données de comptage qui révèle une variabilité plus grande que la moyenne prédite. Ce phénomène dit de surdispersion par rapport à la loi de Poisson est examiné à travers des FEN binomiale négative généralisée et arcsinus stricte ainsi que d'une grande classe des FEN dite de Hinde-Demétrio, laquelle englobe la binomiale négative et l'arcsinus stricte. Des estimations et test d'hypothèses sur certains paramètres des modèles surdispersés sont proposés et appliquées sur des données réelles. Dans la dernière partie, deux techniques d'estimation sont présentées. La première est relative à une loi implicite ou conditionnelle d'un paramètre connaissant les observations. La seconde est une approche pour montrer l'unimodalité de la vraisemblance dans un modèle de capture séquentielle. Cette dernière est appliquée à l'estimation de la biomasse des saumons dans le bassin de l'Adour.
|
2 |
Sur les modèles Tweedie multivariés / On multi variate tweedie modelsCuenin, Johann 06 December 2016 (has links)
Après avoir fait un rappel sur les généralités concernant les familles exponentielles naturelles et les lois Tweedie univariées qui en sont un exemple particulier, nous montrerons comment étendre ces lois au cas multivarié. Une première construction permettra de définir des vecteurs aléatoires Tweedie paramétrés pas un vecteur de moyenne et une matrice de dispersion. Nous montrerons que les corrélations entre les lois marginales peuvent être contrôlées et varient entre -1 et 1. Nous verrons aussi que ces vecteurs ont quelques propriétés communes avec les vecteurs gaussiens. Nous en donnerons une représentation matricielle qui permettra d'en simuler des observations. La seconde construction permettra d'introduire les modèles Tweedie multiples constitués d'une variable Tweedie dont l'observation sera la dispersion des autres marges, toutes de lois Tweedie elles aussi. Nous donnerons la variance généralisée de ces lois et montrerons que cette dernière peut-être estimée efficacement. Enfin, nous verrons que, modulo certaines restrictions, nous pourrons donner une caractérisation par la fonction de variance généralisée des familles exponentielles naturelles générées par ces lois. / After a reminder of the natural exponential families framework and the univariate Tweedie distributions, we build two multivariate extension of the latter. A first construction, called Tweedie random vector, gives a multivariate Tweedie distribution parametrized by a mean vector and a dispersion matrix. We show that the correlations between the margins can be controlled and vary between -1 and 1. Some properties shared with the well-known Gaussian vector are given. By giving a matrix representation, we can simulate observations of Tweedie random vectors. The second construction establishes the multiple stable Tweedie models. They are vectors of which the first component is Tweedie and the others are independant Tweedie, given the first one, and with dispersion parameter given by an observation of the first component. We give the generalized variance and show that it is a product of powered component of the mean and give an efficient estimator of this parameter. Finally, we can show, with some restrictions, that the generalized variance is a tool which can be used for characterizing the natural exponential families generated by multiple stable Tweedie models.
|
3 |
Caractérisations des familles exponentielles naturelles cubiques : étude des lois Beta généralisées et de certaines lois de Kummer / Characterizations of the cubic natural exponential families : Study of generalized beta distributions and some Kummer’s distributionsHamza, Marwa 18 May 2015 (has links)
Cette thèse contient deux parties différentes. Dans la première partie, nous nous sommes intéressés aux familles exponentielles naturelles cubiques dont la fonction variance est un polynôme de degré inférieur ou égal à 3. Nous donnons trois caractérisations de ces familles en se basant sur une approche Bayesienne. L’une de ces caractérisations repose sur le fait que la fonction cumulante vérifie une équation différentielle. La deuxième partie de notre travail est consacrée aux conséquences de la propriété d’indépendance de type « Matsumoto-Yor » qui a été développée par Koudou et Vallois. Cette propriété fait intervenir la famille de lois de Kummer de type 2 et les lois Beta généralisées. En se basant sur la méthode de conditionnement et sur la méthode de rejet, nous donnons des réalisations presque sûre de ces distributions de probabilités. D’autre part, nous caractérisons la famille de lois de Kummer de type 2 (resp. les lois Beta généralisées) par une équation algébrique impliquant des lois gamma (resp. les lois Beta) / This thesis has two different parts. In the first part we are interested in the real cubic natural exponential families such that their variance function is a polynomial of degree less than or equal to 3. We give three characterizations of such families using a Bayesian approach. One of these characterizations is based on a differential equation verified by the cumulant function. In a second part we study in depth the independence property of the type “Matsumoto-Yor” that was developed by Koudou and Vallois. This property involves the Kummer distribution of type 2 and the generalized beta ones. Using the conditioning and the rejection method, we give almost sure realization of these distributions. We characterize the family of Kummer distribution of type 2 with an algebraic equation involving the gamma ones. We proceed similarly with the generalized beta distributions
|
4 |
Caractérisations des modèles multivariés de stables-Tweedie multiples / Characterizations of multivariates of stables-Tweedie multiplesMoypemna sembona, Cyrille clovis 17 June 2016 (has links)
Ce travail de thèse porte sur différentes caractérisations des modèles multivariés de stables-Tweedie multiples dans le cadre des familles exponentielles naturelles sous la propriété de "steepness". Ces modèles parus en 2014 dans la littérature ont été d’abord introduits et décrits sous une forme restreinte des stables-Tweedie normaux avant les extensions aux cas multiples. Ils sont composés d’un mélange d’une loi unidimensionnelle stable-Tweedie de variable réelle positive fixée, et des lois stables-Tweedie de variables réelles indépendantes conditionnées par la première fixée, de même variance égale à la valeur de la variable fixée. Les modèles stables-Tweedie normaux correspondants sont ceux du mélange d’une loi unidimensionnelle stable-Tweedie positive fixé et les autres toutes gaussiennes indépendantes. A travers des cas particuliers tels que normal, Poisson, gamma, inverse gaussienne, les modèles stables-Tweedie multiples sont très fréquents dans les études de statistique et probabilités appliquées. D’abord, nous avons caractérisé les modèles stables-Tweedie normaux à travers leurs fonctions variances ou matrices de covariance exprimées en fonction de leurs vecteurs moyens. La nature des polynômes associés à ces modèles est déduite selon les valeurs de la puissance variance à l’aide des propriétés de quasi orthogonalité, des systèmes de Lévy-Sheffer, et des relations de récurrence polynomiale. Ensuite, ces premiers résultats nous ont permis de caractériser à l’aide de la fonction variance la plus grande classe des stables-Tweedie multiples. Ce qui a conduit à une nouvelle classification laquelle rend la famille beaucoup plus compréhensible. Enfin, une extension de caractérisation des stables-Tweedie normaux par fonction variance généralisée ou déterminant de la fonction variance a été établie via leur propriété d’indéfinie divisibilité et en passant par les équations de Monge-Ampère correspondantes. Exprimées sous la forme de produit des composantes du vecteur moyen aux puissances multiples, la caractérisationde tous les modèles multivariés stables-Tweedie multiples par fonction variance généralisée reste un problème ouvert. / In the framework of natural exponential families, this thesis proposes differents characterizations of multivariate multiple stables-Tweedie under "steepness" property. These models appeared in 2014 in the literature were first introduced and described in a restricted form of the normal stables-Tweedie models before extensions to multiple cases. They are composed by a fixed univariate stable-Tweedie variable having a positive domain, and the remaining random variables given the fixed one are reals independent stables-Tweedie variables, possibly different, with the same dispersion parameter equal to the fixed component. The corresponding normal stables-Tweedie models have a fixed univariate stable-Tweedie and all the others are reals Gaussian variables. Through special cases such that normal, Poisson, gamma, inverse Gaussian, multiple stables-Tweedie models are very common in applied probability and statistical studies. We first characterized the normal stable-Tweedie through their variances function or covariance matrices expressed in terms of their means vector. According to the power variance parameter values, the nature of polynomials associated with these models is deduced with the properties of the quasi orthogonal, Levy-Sheffer systems, and polynomial recurrence relations. Then, these results allowed us to characterize by function variance the largest class of multiple stables-Tweedie. Which led to a new classification, which makes more understandable the family. Finally, a extension characterization of normal stable-Tweedie by generalized variance function or determinant of variance function have been established via their infinite divisibility property and through the corresponding Monge-Ampere equations. Expressed as product of the components of the mean vector with multiple powers parameters reals, the characterization of all multivariate multiple stable- Tweedie models by generalized variance function remains an open problem.
|
Page generated in 0.1044 seconds