• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 6
  • 2
  • 1
  • Tagged with
  • 37
  • 14
  • 14
  • 13
  • 10
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Contribution au développement d'une approche simplifiée de la simulation numérique du formage incrémental / Contribution to the development of a Simplified Approach for the numerical simulation of incremental sheet forming process

Yu, Yan 11 December 2014 (has links)
Le formage incrémental est un procédé innovant de mise en forme des tôles métalliques utilisant un outil rigide à bout hémisphérique piloté par une machine à Commandes Numériques. La tôle encastrée sur son contour est déformée localement suivant une trajectoire d'outil, définissant ainsi la forme finale de la pièce. Les avantages de ce procédé sont sa très grande flexibilité, son faible coût d'outillage, et sa capacité à raccourcir la chaîne de conception et de fabrication. Le respect de la demande de diminution des coûts, et des délais de développement a rendu la simulation numérique incontournable. De nombreux modèles robustes de simulation basés sur la méthode des éléments finis permettent de prédire la formabilité et la qualité de la géométrie d'une pièce. Les algorithmes classiques de la simulation garantissent des résultats de qualités mais les temps de calculs nécessaire sont encore très élevés. Dans ce contexte, une Approche Simplifiée a été développée afin de réduire les temps de calculs. Cette approche permet de se soustraire à l'intégration de l'outil et de son contact avec la tôle dans l'algorithme de simulation numérique, en les remplaçant par une imposition locale et évolutive de déplacement sur certains nœuds supposés être en contact avec l'outil. Un complément est proposé dans cette thèse pour diminuer la durée d'une séquence de simulation, en utilisant un élément coque triangulaire DKTRF (Discrete Kirchoff Triangle Rotation Free). Cet élément permet de tenir compte des effets de membrane et de flexion avec un nombre de degré de liberté restreint, car les termes en flexion sont définis en fonction des déplacements nodaux des éléments adjacents. L'intégration de cet élément associé à l'Approche Simplifiée pour un maillage régulier dans un problème élasto-plastique donne des résultats géométriques et comportementaux cohérents avec des temps de calculs considérablement réduit par rapport aux simulations numériques effectuées sous ABAQUS®. Les résultats obtenus à l'aide de la simulation numérique d'un cas-test sont par la suite comparés à des résultats expérimentaux, permettant ainsi de valider le modèle et d'étudier les influences des paramètres du procédé sur la pièce finale. Pour ce faire, une méthodologie d'essai expérimentale est développée afin de mieux estimer l'efficacité du procédé de formage incrémentale sur une machine à Commandes Numériques. La technique de mesure utilisée pour caractériser la géométrie (épaisseur et profil) de la pièce est la méthode de numérisation. Cet outil de mesure, retranscrit le plus fidèlement la géométrie de la pièce par l'intermédiaire de caméras et d'un logiciel de post-traitement. Particulièrement bien adapté pour l'évaluation du profil, la méthode d'acquisition reste cependant à optimiser notamment pour l'évaluation de l'épaisseur de la tôle / The incremental sheet forming (ISF) is an innovative process in sheet metal forming method by using a hemispherical rigid tool controlled by Computerized Numerical Control machine (CNC). The clamped sheet is locally deformed following a tool path, defining thus the final geometry of the part. The advantages of this method are its high flexibility, its low tooling cost, and its ability to shorten the design and manufacturing chain. The application of the reduction of the overall costs, and development time made the numerical simulation essential. Many robust simulation models based on the finite element method enable to predict the formability and the geometrical quality of the part. Classic algorithms of simulation ensure reliable quality results but necessary computation times (CPU) are still very long. In this context, a Simplified Approach has been developed to reduce the computation time. This approach allows avoiding the integration of the tool and its contact with the sheet into the numerical simulation, by replacing them with a local and progressive displacement imposition of certain nodes supposed to be in contact with the tool. A complementary solution is proposed within this thesis to reduce the CPU times of a simulation sequence, by using a shell element called DKTRF (Discrete Kirchhoff Triangle Rotation Free). This element takes account of the membrane and bending effects with restricted numbers of degrees of freedom, as the flexion terms are defined in accordance with the nodal translational displacements of the adjacent elements. The integration of this element combined with the Simplified Approach for a regular mesh in an elastoplastic problem gives consistent outcomes in geometric and behavioural, with significant diminution of CPU times in comparison with the industrial numerical simulation performed on ABAQUS©. Results obtained by means of numerical simulation of a study case are then compared with experimental results, thereby enabling to validate the model and to study the influences of process parameters on the final piece. To do this, an experimental test procedure is developed in order to evaluate the efficiency of incremental forming process on a Computerized Numerical Control machine (CNC). The measurement technique used to characterize the geometry (thickness and profile) of the piece is the scanning method. The measurement tool, transcribed accurately the geometry of the part via cameras and post-treatment software. Particularly well-suited for the assessment of the profile, the acquisition method remains to be optimize especially for assessing the thickness of the sheet
22

Mise en forme et endommagement des tôles métalliques sous chargement biaxal à taux de déformation élevé / Sheet Metal Forming and Failure during Biaxial Stretching at High Strain Rates

Davies, Richard 21 May 2012 (has links)
Cette thèse met l'accent sur la recherche scientifique pour développer une classe de procédés à hautesvitesses de déformation des tôles métalliques en alliages d'aluminium et en acier à haute résistance (AHR).Ces technologies emploient une impulsion de pression de courte durée qui propulse la tôle dans une matrice.Ces procédés sont généralement décrits comme procédés de formage par impulsion de pression (PPF). Letravail proposé dans ce mémoire de thèse a permis de surmonter trois obstacles pour l'utilisation desprocédés PPF et la fabrication à moindre coût de structures légères. Le premier obstacle a été le manque decorrélation entre formabilité et vitesses de déformation qui se développent lors d’un procédé PPF. Nous avonsproposé d’analyser la formabilité et la rupture des tôles, et de caractériser les vitesses de déformation et leurl'hétérogénéité pendant le procédé PPF. Le deuxième obstacle a été le manque de lois constitutives validéespour les métaux déformés par le procédé PPF. Nous avons étudié la microstructure et l'évolution despropriétés mécaniques durant le procédé PPF. Le troisième obstacle est le manque de modèles de formabilitéprédictifs validés pour le procédé PPF. Nous avons utilisé la méthode Marciniak-Kuczynski pour la prédictionde la formabilité de l’alliage AA5182 et de l’acier DP600 sous un large éventail de vitesses de déformation etsous différentes directions de ces vitesses. La combinaison de ces résultats de recherche permet une plusgrande capacité prédictive pour concevoir et développer des procédés PPF pour composants d’automobiledésirés à partir d'aluminium et d’acier AHR. / This thesis focuses on scientific investigation to develop and enable a class of high strain ratesheet metal forming of aluminum alloys and advanced high strength steel (AHSS). These technologiesemploy a short duration pressure‐pulse to drive sheet metal into single‐sided dies, and can generally bedescribed as pulse pressure forming (PPF) processes. The work under this thesis has overcome threetechnical barriers to using PPF processing for more cost effective lightweight vehicles. The first technicalbarrier was the lack of understanding of the interrelationship between formability and measured strainrates that develop during PPF processing. The work under this thesis investigated the formability andfracture of sheet metals during PPF, and characterized the strain rate and the strain rate heterogeneity.The second technical barrier was the lack of a validated constitutive model for lightweight materialsduring PPF processing. The work under this thesis investigated the microstructure and mechanicalproperty evolution in metals during PPF. The third technical barrier was the lack of validated andpredictive formability models for PPF processes. The work under this thesis used the Marciniak andKuczynski method of formability prediction to predict the formability of both aluminum alloy AA5182and AHSS alloy DP600 across a wide range of strain rates and strain rate directions. The combination ofthese research results permits a more predictive capacity to design and develop PPF manufacturingprocesses for a desired automotive component made from aluminum alloys and AHSS.
23

Modélisation numérique du formage superplastique de tôles

Bellet, Michel 04 March 1988 (has links) (PDF)
Caractérisation générale de la superplasticité et du procédé de mise en forme des tôles par pression gazeuse. Présentation d'une modélisation numérique permettant une meilleure maîtrise de ce procédé de fabrication notamment utilisé dans l'industrie aéronautique pour le formage de pièces de structures en tôles d'alliages de titane ou d'aluminium.
24

Finite element mesoscopic analysis of damage in microalloyed continuous casting steels at high temperature/Analyse mésoscopique par éléments finis de lendommagement à haute température des aciers microalliés de coulée continue

Castagne, Sylvie 12 February 2007 (has links)
This thesis addresses the problem of damage at elevated temperature with a view to analysing transverse cracking during the continuous casting of microalloyed steels. Based on the results of a previous project undertaken at the University of Liège to simulate the continuous casting process at the macroscopic level, the present research aims at studying the damage growth using a finite element mesoscopic approach that models the grains structure of the material. The developments are done at the mesoscopic scale using information from both the microscopic and macroscopic levels. In order to determine the constitutive laws governing the damage process at the mesoscopic scale, the physical mechanisms leading to the apparition of cracks during steel continuous casting are first investigated. It is acknowledged that in the studied temperature range (800 to 1200 °C), the austenitic grain boundary is a favourable place for cracks to initiate and propagate. The mechanisms of voids nucleation, growth and coalescence are established, the cavities evolving under diffusion and creep deformations. Having identified the damage mechanisms occurring under continuous casting conditions, a numerical approach for the modelling of these phenomena at the grain scale is proposed. The mesoscopic model, which is implemented in the Lagrangian finite element code LAGAMINE developed at the University of Liège, is built on the basis of a 2D mesoscopic cell representative of the material. The finite element discretization comprises solid elements inside the grains and interface elements on the grains boundaries. An elastic-viscous-plastic law of Norton-Hoff type, which represents the thermo-mechanical behaviour of the material, is associated to the solid elements for the modelling of the grains; and a damage law accounting for cavitation and sliding is linked to the interface elements for the modelling of the damage growth at the grains boundaries. The transfer between the macroscopic and mesoscopic scales is realised by imposing the stress, strain and temperature fields, collected during the parent macroscopic simulation, as boundary conditions on the mesosopic cell. Macroscopic experiments, analytical computations and finite element simulations, as well as literature review and microscopic analyses, are used to define the parameters of the material laws. The experimental results and the identification methodology leading to the definition of the set of parameters specific to the studied steel are described. Finally, the influence of oscillation marks and process defects on cracks formation during the industrial process of continuous casting is analysed. The results are compared with in-situ observations and cracking risk indicators computed by the macroscopic model.
25

Numerical Simulations of the Single Point Incremental Forming Process

Henrard, Christophe 13 February 2009 (has links)
1. Scope of the Study<BR> ---------------------<BR> In the modern engineering world, technological advancements drive the product design process. Increasingly powerful CAD programs make more complex product designs possible, which in turn boost the demand for more complex prototypes. At the same time, fast-moving competitive markets require frequent design changes, shorter lead times, and tighter budgets. In short, prototyping must be faster, better, and less expensive.<BR> <BR> Within this context, rapid prototyping in sheet metal is highly desirable because the manufacturing of functional prototypes speeds up the time to market. While the market is well developed when it comes to rapid prototyping for plastic parts, the options for prototyping geometrically complicated sheet metal components are more limited and extremely expensive, because all the methods available require expensive tooling, machinery or manual labor.<BR> <BR> Unlike many other sheet metal forming processes, incremental forming does not require any dedicated dies or punches to form a complex shape. Instead, the process uses a standard smooth-end tool, the diameter of which is far smaller than the part being made, mounted on a three-axis CNC milling machine.<BR> <BR> The sheet metal blank is clamped around its edges using a blank-holder. During the forming process, the tool moves along a succession of contours, which follow the final geometry of the part, and deforms the sheet into its desired shape incrementally.<BR> <BR> 2. Context of the Research<BR> --------------------------<BR> The work presented in this thesis was started in October 2003 in the framework of the SeMPeR project (Sheet Metal oriented Prototyping and Rapid manufacturing). This was a four-year-long project, whose purpose was to develop a research platform that would support an in-depth analysis of the incremental forming and laser forming processes. This platform supported experimental, numerical, and analytical research activities, the interaction between which was expected to lead to the design of new and improved process variants and the identification of effective process planning and control strategies.<BR> <BR> Four research partners from three different universities were involved in the project, covering the various academic disciplines required. As project leader, the PMA Department of the Catholic University of Leuven (KUL) provided extensive background knowledge in numerically controlled sheet metal forming processes, as well as long-term experience of experimental hardware development and process planning. This department was in charge of the experimental study of the processes. The MTM Department from the same university studied the processes in detail using accurate finite element models. The MEMC Department of the Free University of Brussels (VUB) provided expertise in in-process strain and displacement measurement, and material characterization by means of inverse method techniques. Finally, the ArGEnCo Department of the University of Liège (ULg), to which the present author is affiliated, undertook the task of developing a finite element code adapted to the incremental forming process.<BR> <BR> Because of its promising outcome, the project held wide industrial interest: several companies assisted in ensuring the ultimate industrial relevance of the research and provided logistical support in terms of hardware, materials, and specific data.<BR> <BR> 3. Objective of the Thesis<BR> --------------------------<BR> Although the SeMPeR project aimed at studying two rapid prototyping processes, the present work focused only on one of those: incremental forming. The goal of the team at the University of Liège was to adapt a department-made finite element code, Lagamine, to the incremental forming process. In particular, the computation time had to be reduced as much as possible while maintaining a sufficient level of accuracy.<BR> <BR> 4. Outline of the Thesis<BR> ------------------------<BR> The body of the text is divided into three parts.<BR> <BR> The first part contains two chapters. The first of these provides a literature review in the field of incremental forming. More specifically, it introduces the process, presents an overview of its practical implementation and experimental setup requirements, and shows its benefits and limitations. Then, the chapter focuses on the latest developments in terms of finite element modeling and analytical computations.<BR> <BR> The second chapter presents the numerical tools used throughout this research. This consists mainly of the finite element code, the elements, and the constitutive laws. Then, this chapter gives an overview of the experimental setup and measuring devices used during the experimental tests performed in Leuven. The second part focuses on dynamic explicit simulations of incremental forming and contains four chapters. The first justifies the use of a dynamic explicit strategy. The second presents the new features added to the finite element code in order to be able to model incremental forming with such a strategy. The third explains the computation of the mass matrix of the shell element used throughout this part of the thesis and justifies this computation. Finally, the fourth chapter analyzes the overall performance of the dynamic explicit simulations both in terms of accuracy and computation time.<BR> <BR> The third part of this thesis contains an in-depth analysis of the incremental forming process using more classic implicit finite element simulations. This analysis is performed in two steps. In a first chapter, the influence of using a partial mesh for the simulations is evaluated in terms of accuracy and computation time. Then, in a second and final chapter, a detailed analysis of the deformation mechanism occurring during this forming process is carried out.<BR> <BR> Finally, this thesis ends with the major conclusions drawn from the research and perspectives on possible means of further improving the simulation tool.<BR> <BR> 5. Original Contributions<BR> -------------------------<BR> Through this research, several major contributions were achieved.<BR> <BR> First, a comprehensive literature review of the incremental forming process was carried out. In particular, the review focused on original articles concerning the limitations of the process and possible ways of bypassing them; on the most recent explanations for the increased formability observed during the process; and on the state of the art in finite element simulations of incremental forming. Understanding the concepts and difficulties inherent in these publications was made possible particularly by the SeMPeR project thanks to the discussions held and the monthly follow-ups on research performed by its members.<BR> <BR> Secondly, Lagamine's shell element was corrected and its mass matrix modified to enable its use with an explicit strategy. Following this, a new approach for modeling the contact between an element and the forming tool during simulations in a dynamic explicit strategy was developed and thoroughly tested. A detailed comparison of the influence of various finite element parameters on the simulations' results was performed, in particular regarding the choice between using the implicit and explicit strategies and the use of mass scaling to reduce the computation time.<BR> <BR> In addition, many simulations were validated thanks to experimental results.<BR> <BR> Moreover, the computation time required for simulations of the forming of parts with rotational symmetry was radically reduced by using a partial model with a new type of boundary conditions.<BR> <BR> Finally, the material behavior occurring during incremental forming was analyzed.
26

Identification des paramètres clés du laminage transversal : vers la formalisation des connaissances scientifiques et technologiques

Mangin, Philippe 22 June 2012 (has links) (PDF)
Le laminage transversal, procédé de mise en forme des métaux essentiellement développé " à chaud ", permet d'obtenir des bruts de haut niveau de qualité en réalisant un gain notoire sur l'engagement matière face à d'autres procédés. Les travaux de thèse dressent l'état de l'art de cette technologie complexe et mal connue en France ; ils s'appuient sur une bibliographie dense et diversifiée pour synthétiser les lois qui régissent ce procédé et identifier les paramètres significatifs. Les conditions du contact pièce/outil étant prépondérantes, la mesure de la pression de contact est développée sur des matrices instrumentées afin de caractériser la sévérité des efforts. Des préformes en acier, titane et alliage base cuivre-aluminium avec simple réduction de diamètre sont fabriquées pour mettre en évidence les spécificités du contact pièce-matrice au niveau tribologique et rhéologique. En vue de démontrer que la condition d'entrainement en rotation des pièces est un facteur clé de pilotage du procédé, de nombreux essais expérimentaux pointent le rôle de la texture de surface pour l'obtention de pièces sans défaut, ainsi que son influence sur l'histoire thermomécanique interne. Les nombreuses difficultés liées à la mise au point d'outillages sont identifiées sur la base d'observations expérimentales et ensuite intégrées dans une démarche de conception d'outillage. Une procédure de conception d'outillage est ainsi proposée en s'appuyant sur une synthèse de règles issues de la bibliographie ainsi que de règles déterminées par les travaux expérimentaux. Une étude de cas sur une préforme " balustre " est traitée ; elle intègre la conception des matrices, la simulation numérique avec le logiciel FORGE© ainsi que les essais de mise au point d'outillage sur un banc développé à l'ENSAM. Une vision d'ensemble sur le procédé et les paramètres qui le gouvernent est finalement proposée.
27

Modélisation théorique et numérique des critères d'instabilité plastique. Application à la prédiction des phénomènes de striction et de localisation lors d'opérations d'emboutissage.

Altmeyer, Guillaume 29 November 2011 (has links) (PDF)
L'objectif est d'apporter une contribution à la prédiction des phénomènes de striction et de localisation sous forme de bandes par la modélisation des critères d'instabilité plastique, par la comparaison de leurs bases théoriques et par le tracé de Courbes Limites de Formage (CLF) numériques. Une étude bibliographique permet de distinguer quatre approches principales : le principe de force maximum, l'analyse de bifurcation, l'analyse linéaire de stabilité et les méthodes multizones. Afin de permettre une comparaison, les principaux critères sont réécrits dans un cadre commun. Pour la striction diffuse, un rapprochement entre les critères de force maximum et de bifurcation par point limite est proposé. Pour la localisation, les prédictions de CLF obtenues avec le modèle M - K tendent vers celles du critère de Rice lorsque la taille du défaut initial tend vers zéro. Des tracés de CLF illustrent ces résultats et mettent en évidence l'influence du choix de la loi d'écrouissage sur les CLF.
28

Intégration et optimisation de l'assistance a la mise en forme par vibrations

KHAN, Armaghan 09 July 2013 (has links) (PDF)
Le travail présenté intègre l'utilisation des vibrations mécaniques dans les procédés de mise en forme à froid des matériaux de comportement viscoplastique. Les avantages de procédé de mise en forme assisté par vibrations se mesurent par une réduction de l'intensité de la force de mise en forme, une diminution de la contrainte d'écoulement, la réduction du frottement entre l'outil et lopin, une distribution uniforme de la déformation viscoplastique et une amélioration de l'état de surface de la pièce finale. A cet effet, un modèle analytique avec une seule source de vibration a été développé pour le procédé de forgeage. Les vibrations sinusoïdale et triangulaire ont été intégrées dans le modèle et il se trouve que les vibrations triangulaire est plus avantageux comparer à les vibrations sinusoïdal a cause du contrôle sur le rapport cyclique. On observe également que les paramètres principaux qui contrôlent la réduction de la force de forgeage sont : le rapport de vitesse définie par l'amplitude de la vitesse de vibration et la vitesse moyenne de l'outillage et la sensibilité à la vitesse de déformation. Le modèle analytique a été validé au moyen des simulations éléments finis réalisés avec le code de calcul FORGE2011 ® et les essais expérimentaux en dispositif expérimentale de pot vibrant a été conçu et les essais ont été réalisé sur les machines Lloyd LR30K ou ZWICK / Roell 1200. L'étude a ensuite été enrichi avec les plusieurs sources de vibrations. L'étude cinématique montre que les vibrations multiples générés une onde progressive. Cette nouvelle cinématique a été intégrée dans un modèle numérique sur le code de simulation par éléments finis FORGE2011 ® pour étudier le forgeage assisté par plusieurs sources des vibrations. L'analyse de résultats montre une réduction considérable de la force de forgeage et de la contrainte de l'écoulement ainsi qu'une modification de la loi de frottement générer par le changement de la direction du vecteur de vitesse.
29

Caractérisation expérimentale et modélisation de la déformation plastique des tôles métalliques / Modeling and experimental characterization of the plastic deformation of sheet metals

Teaca, Mihaela 20 October 2009 (has links)
La détermination précise du comportement plastique des tôles métalliques anisotropes est un élément clé d'une simulation numérique fiable des procédés de mise en forme par emboutissage. Dans cette étude, nous avons mis au point une procédure d'identification paramétrique d'un modèle de surface de plasticité anisotrope à 8 paramètres, qui s'appuie sur des essais classiques de traction uniaxiale selon différentes orientations de l'éprouvette, mais aussi sur des essais de traction biaxiale hétérogènes. Ces derniers ont d'abord nécessité la conception de 2 types d'éprouvettes cruciformes qui, sollicitées en traction biaxiale, sont soumises à des champs de déformation couvrant le domaine allant de la traction uniaxiale à la traction équibiaxiale. L'analyse des essais de traction permet tout d'abord de déterminer les paramètres d'écrouissage ainsi que certains des paramètres de la fonction de charge liés à l'anisotropie en déformation et l'anisotropie en contrainte des matériaux. Les autres paramètres de la fonction de charge, qui interviennent dans la définition de la forme de la surface de plasticité dans le domaine de l'expansion, sont ensuite obtenus à l'aide d'une méthode d'identification minimisant l'écart entre les champs de déformation obtenus expérimentalement par une méthode d'analyse d’images, et ceux déterminés par simulation des essais à l'aide d'un code de calcul par éléments finis. La procédure d'identification a été appliquée à deux nuances d'aciers pour emboutissage, un acier inoxydable AISI304, et deux alliages d'aluminium. Les résultats montrent la grande sensibilité de la méthode d'identification proposée. Des essais de validation sont également présentés / The precise determination of the plastic behaviour of anisotropic sheet metals is a key element for obtaining reliable results in numerical simulations of forming processes. In this study, an identification procedure has been developed using an 8- parameter yield surface model. The procedure is based on the analysis of both classical uniaxial tension tests performed along different directions, and heterogeneous biaxial tensile tests. Two types of cruciform specimens have been designed to this end. Under biaxial stretching, the specimens are submitted to strain fields covering the range from uniaxial tension to equibiaxial tension. First, the analysis of uniaxial tensile tests allows us to determine strain-hardening parameters, and yield function parameters related to strain- and stress-anisotropy. Then, the other yield function parameters defining the shape of the yield surface in the biaxial stretching range are obtained using an identification procedure which minimizes the difference between strain fields obtained experimentally by an image correlation method, and strain fields determined by numerical simulations using a finite element code. The identification procedure has been applied to 2 steels of deep-drawing quality, an AISI304 stainless steel and two aluminium alloys. The results display the high sensitivity of the proposed identification method. Validation tests are also presented
30

Approche multi-échelles pour une prédiction fiable de la ductilité des matériaux métalliques / A multiscale approach for a reliable prediction of the ductility of metallic materials

Akpama, Holanyo Koffi 28 August 2017 (has links)
Cette thèse a pour objectif principal de développer un outil numérique capable de prédire la ductilité des matériaux polycristallins. Cet outil est basé sur le couplage de l’approche multi-échelles autocohérente à deux critères d’instabilités plastiques : la théorie de bifurcation et l’approche d’imperfection initiale. Le schéma autocohérent est utilisé pour déterminer le comportement d’un agrégat polycristallin (supposé représentatif du matériau étudié) à partir du comportement des monocristaux constitutifs. Le comportement à l’échelle monocristalline est formulé dans le cadre des grandes déformations élastoplastiques. Deux différentes versions du critère de Schmid sont successivement utilisées pour modéliser l’écoulement plastique monocristallin : la version classique et une version régularisée. Pour intégrer numériquement les équations constitutives à l’échelle monocristalline, deux algorithmes ont été développés : un algorithme de type évolutif et un algorithme de type retour radial. Les équations gouvernant le schéma autocohérent ont été revisitées. Pour résoudre ces équations, un nouvel algorithme numérique a été proposé, qui est montré être plus efficace que les algorithmes existants communément basés sur la méthode du point fixe. De plus, une approche numérique robuste a été développée, qui permet de coupler le modèle autocohérent à l’approche d’imperfection initiale. La performance ainsi que la robustesse des différents algorithmes et schémas numériques développés ont été mis en évidence à travers plusieurs résultats de simulation. L’effet de plusieurs paramètres et choix de modélisation sur la prédiction de formabilité des tôles métalliques a été extensivement analysé. / The main objective of this PhD thesis is to develop a numerical tool capable of predicting the ductility of polycrystalline materials. This tool is based on the coupling of the self-consistent multiscale approach with two plastic instability criteria: the bifurcation theory and the initial imperfection approach. The self-consistent scheme is used to derive the mechanical behavior of a polycrystalline aggregate (assumed to be representative of the studied material) from that of its microscopic constituents (the single crystals). The constitutive framework at the single crystal scale follows a finite strain rate-independent formulation. Two different versions of the Schmid law are successively used to model the plastic flow: the classical version and a regularized one. To solve the constitutive equations at the single crystal scale, two numerical algorithms have been developed: one is based on the usual return-mapping scheme and the other on the so-called ultimate scheme. The equations governing the self-consistent approach have been revisited. To solve these equations, a new numerical scheme has been developed, which is shown to be more efficient than the existing schemes commonly based on the fixed point method. Also, a robust numerical approach has been developed to couple the self-consistent model to the initial imperfection approach. The performance and the robustness of the different numerical schemes and algorithms developed have been highlighted through several simulation results. The impact of various parameters and modeling choices on the formability prediction of sheet metals has been extensively analyzed.

Page generated in 0.4142 seconds