• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transport et bruit quantique dans les fils mésoscopiques

Torrès, Julien 13 September 2001 (has links) (PDF)
Un conducteur quantique est bien caractérisé par sa conductance donnée par la formule de Landauer. Mais le bruit contient davantage d'informations que la conductance : il mesure les fluctuations temporelles du courant autour de sa valeur moyenne. De plus, le signe des corrélations de bruit est lié à la statistique des porteurs de charge. Dans une jonction entre un métal normal et un supraconducteur, le bruit présente une singularité à la fréquence Josephson, signature de la charge 2e des paires de Cooper impliquées dans le transport. Lorsque la tension appliquée est supérieure au gap du supraconducteur, la courbe du bruit exhibe des singularités à plusieurs fréquences auxquelles on peut associer un processus de réflexion ou de transmission. L'analogue fermionique de l'expérience d'Hanbury-Brown et Twiss avec un supraconducteur permet d'observer à la fois des corrélations positives et négatives dans un même système. Maintenir une différence de potentiel entre les deux extrémités d'un fil crée une situation relevant de la thermodynamique hors de l'équilibre. Formellement, on peut se ramener à un calcul à l'équilibre et écrire une théorie des perturbations grâce à la méthode de Keldysh. La théorie des liquides de Luttinger décrit les systèmes unidimensionnels d'électrons en interaction. Le Hamiltonien peut se mettre sous forme quadratique grâce à la bosonisation. D'autre part, un liquide de Luttinger chiral constitue un bon modèle des états de bord de l'effet Hall quantique fractionnaire. Grâce au formalisme de Keldysh, on peut retrouver une formule de type Schottky et identifier la charge des quasiparticules de Laughlin.
2

Modeling of ballistic electron emission microscopy / Modélisation de la microscopie à émission d'électrons balistiques

Claveau, Yann 30 October 2014 (has links)
Après la découverte de la magnéto-résistance géante (GMR) par Albert Fert et Peter Grünberg, l'électronique a connu une véritable avancée avec la naissance d'une nouvelle branche appelée spintronique. Cette discipline, encore jeune, consiste à exploiter le spin des électrons dans le but notamment de stocker de l'information numérique. La plupart des dispositifs exploitant cette propriété quantique des électrons consistent en une alternance de fines couches magnétiques et non magnétiques sur un substrat semi-conducteur. L'un des outils de choix pour la caractérisation de ces structures, inventé en 1988 par Kaiser et Bell, est le microscope à émission d'électrons balistiques (BEEM). A l'origine, ce microscope, dérivé du microscope à effet tunnel (STM), était dédié à l'imagerie d'objets (nanométriques) enterrés ainsi qu'à l'étude de la barrière de potentiel (barrière Schottky) qui se forme à l'interface d'un métal et d'un semi-conducteur lors de leur mise en contact. Avec l'essor de la spintronique, le BEEM est devenu une technique de spectroscopie essentielle mais encore fondamentalement incomprise. C'est en 1996 que le premier modèle réaliste, basé sur le formalisme hors équilibre de Keldysh, a été proposé pour décrire le transport des électrons dans cette microscopie. Il permettait notamment d'expliquer certains résultats expérimentaux jusqu'alors incompris. Cependant, malgré son succès, son usage a été limité à l'étude de structures semi-infinies via un méthode de calcul appelée décimation de fonctions de Green. Dans ce contexte, nous avons étendu ce modèle au cas des films minces et des hétéro-structures du type vanne de spin : partant du même postulat que les électrons suivent la structure de bandes du matériaux dans lesquels ils se propagent, nous avons établi une formule itérative permettant le calcul des fonctions de Green du système fini par la méthode des liaisons fortes. Ce calcul des fonctions de Green a été encodé dans un programme Fortran 90, BEEM v3, afin de calculer le courant BEEM ainsi que la densité d'états de surface. En parallèle, nous avons développé une autre méthode, plus simple, qui permet de s'affranchir du formalisme hors équilibre de Keldysh. En dépit de sa naïveté, nous avons montré que cette approche permettait l'interprétation et la prédiction de certains résultats expérimentaux de manière intuitive. Cependant, pour une étude plus fine, le recours à l'approche “hors équilibre” reste inévitable, notamment pour la mise en évidence d'effets d'épaisseur, lés aux interfaces inter-plans. Nous espérons que ces deux outils puissent se révéler utiles aux expérimentateurs, et notamment pour l'équipe Surfaces et Interfaces de notre département. / After the discovery of Giant Magneto-Resistance (GMR) by Albert Fert and Peter Grünberg, electronics had a breakthrough with the birth of a new branch called spintronics. This discipline, while still young, exploit the spin of electrons, for instance to store digital information. Most quantum devices exploiting this property of electrons consist of alternating magnetic and nonmagnetic thin layers on a semiconductor substrate. One of the best tools used for characterizing these structures, invented in 1988 by Kaiser and Bell, is the so-called Ballistic Electron Emission Microscope (BEEM). Originally, this microscope, derived from the scanning tunneling microscope (STM), was dedicated to the imaging of buried (nanometer-scale) objects and to the study of the potential barrier (Schottky barrier) formed at the interface of a metal and a semiconductor when placed in contact. With the development of spintronics, the BEEM became an essential spectroscopy technique but still fundamentally misunderstood. It was in 1996 that the first realistic model, based on the non-equilibrium Keldysh formalism, was proposed to describe the transport of electrons during BEEM experiments. In particular, this model allowed to explain some experimental results previously misunderstood. However, despite its success, its use was limited to the study of semi-infinite structures through a calculation method called decimation of Green functions. In this context, we have extended this model to the case of thin films and hetero-structures like spin valves: starting from the same postulate that electrons follow the band structure of materials in which they propagate, we have established an iterative formula allowing calculation of the Green functions of the finite system by tight-binding method. This calculation of Green’s functions has been encoded in a FORTRAN 90 program, BEEM v3, in order to calculate the BEEM current and the surface density of states. In parallel, we have developed a simpler method which allows to avoid passing through the non-equilibrium Keldysh formalism. Despite its simplicity, we have shown that this intuitive approach gives some physical interpretation qualitatively similar to the non-equilibrium approach. However, for a more detailed study, the use of “non-equilibrium approach” is inevitable, especially for the detection of thickness effects linked to layer interfaces. We hope these both tools should be useful to experimentalists, especially for the Surfaces and Interfaces team of our department.
3

Fluctuations hors équilibre dans l'effet Hall quantique et dans les circuits hybrides

Chevallier, Denis 30 September 2011 (has links)
Un conducteur est bien caractérisé par sa conductance donnée par la formule de Landauer. Toutefois, le bruit contient davantage d'informations. Il mesure les fluctuations temporelles du courant autour de sa valeur moyenne. De plus, le signe des corrélations croisées est lié à la statistique des porteurs de charge. Cette thèse aborde deux principaux thèmes à savoir le transport dans les liquides de Luttinger et dans les structures hybrides. Dans la première partie, nous commençons par donner une vision détaillée des liquides de Luttinger et des systèmes qu'ils modélisent. Nous parlons également du formalisme de Keldysh permettant de traiter des problèmes hors équilibre. Puis, nous rentrons dans le vif du sujet en étudiant l'effet de la largeur d'un contact ponctuel quantique sur le courant de rétrodiffusion entre les deux états de bords de l'effet Hall quantique. L'augmentation de la largeur du contact ponctuel quantique entraîne une forte diminution du courant de rétrodiffusion. Dans un autre chapitre, nous développons une technique permettant l'utilisation d'un circuit RLC couplé inductivement au circuit mésoscopique pour détecter les corrélations de courant en régime photo-assisté. La mesure de ces corrélations s'effectue à travers la charge aux bornes du condensateur. Dans une deuxième partie, nous consacrons notre étude au transport non-local dans les structures hybrides supraconductrices. L'étude de la réflexion d'Andreev croisée y est détaillée. Finalement, nous étudions une structure en double point quantique reliée à deux électrodes en métal normal et une supraconductrice. Nous mettons en avant la séparation des paires de Cooper en mesurant simultanément les courants de branchement et les corrélations croisées. Nous démontrons que dans le régime antisymétrique, c'est-à-dire lorsque les deux points quantiques ont des niveaux d'énergie opposés par rapport au potentiel chimique du supraconducteur, la réflexion d'Andreev croisée est optimisée. / The conductance is the most natural quantity to characterize a quantum conductor. It is given by the Landauer Formula. However, noise contains more information. It measures the current fluctuations around its average value. Moreover, the sign of the crossed correlations is related to the statistics of carriers. This thesis broaches two main topics which are the transport in the quantum Hall effect and in hybrid circuits.First, we start by introducing the Luttinger liquid and the systems which are modelized by them. Also, we discuss the Keldysh formalism in order to treat nonequilibrium problems. Then, we study the effect of the width of a quantum point contact on the backscattering current between two edge states of the quantum Hall effect. By increasing the width of the quantum point contact, we show that the backscattering current is strongly reduced. In another chapter, we develop a technique to use a RLC circuit inductively coupled to a mesoscopic circuit in order to measure the current correlations in the photo-assisted regime. The measurement of these correlations is performed through the charge on the capacitor plates.Secondly, we present the non-local transport in hybrid structures. The mechanism of Crossed Andreev Reflection is explained. Finally, we study a double quantum dot connected to two normal leads and a superconducting lead. We introduce the separation of the Cooper pair by measuring together the branching currents and the crossed correlations. We demonstrate that in the anti-symmetric regime (the energy level of the two quantum dots have opposite values with respect to the chemical potential of the superconducting lead), crossed Andreev reflection is optimized.
4

Etudes des effets de taille finie et de l'écrantage causé par une pointe de STM dans les liquides de Lüttinger

Guigou, Marine 19 June 2009 (has links) (PDF)
Cette thèse s'inscrit dans le domaine de la physique mésoscopique. Plus particulièrement, on s'est intéressé aux effets de taille finie et aux effets de l'écrantage causé par une pointe de STM dans un fil quantique, ceci à travers les comportements du courant, du bruit non-symétrisé et de la conductance. Ces études reposent sur, d'une part, la théorie des liquides de Luttinger qui permet de décrire les systèmes 1D d'électrons fortement corrélés et d'autre part, le formalisme Keldysh permettant de considérer des situations hors équilibre. <br />Le bruit présente un comportement non poissonien, résultant des effets de taille finie. A travers le transport photo-assisté, il est également montré que ces effets masquent ceux des interactions coulombiennes. En considérant la proximité entre la pointe de STM, qui sert de sonde comme d'injecteur d'électrons, et un fil quantique, des effets d'écrantage apparaissent. Il est montré qu'ils jouent un rôle similaire à ceux des interactions coulombiennes.
5

Etude théorique des fluctuations de courant de l'admittance et de la densité d'états d'un nano-système en interaction

Zamoum, Redouane 27 September 2013 (has links) (PDF)
Dans notre thèse nous nous sommes intéressés à l'étude des fluctuations de courant, de l'admittance quantique ainsi que la densité d'états pour un nano système en interaction. Notre travail se divise en deux parties. Dans la première partie, nous avons étudié les fluctuations de courant et l'admittance pour un conducteur unidimensionnel, en décrivant le système par un liquide de Tomonaga-Luttinger. Nous avons utilisé les techniques de bosonisation et de refermionisation afin d'aboutir à des résultats exacts pour tous les régimes de température, toutes les valeurs de la tension appliquée et toute la gamme des fréquences. Les résultats obtenus sont appliqués à un conducteur cohérent couplé à un quantum de résistance, et aux états de bord dans le régime de l'effet Hall quantique fractionnaire. Dans le cas d'un conducteur cohérent, le bruit non symétrisé à fréquence finie exhibe un profil différent de celui de la théorie de la diffusion, et la conductance à fréquence finie est directement liée au courant. Dans le cas du régime de l'effet Hall quantique fractionnaire, nous avons pu établir que dans certaines limites, il existe une relation entre les corrélations de courant à l'admittance quantique. En particulier, les singularités qui apparaissent dans les corrélations de courant sont celles de l'admittance. Dans la deuxième partie, nous avons étudié un fil quantique connecté à deux réservoirs qui sont représentés par deux impuretés. Le système est décrit par un liquide de Tomonaga-Luttinger. Nous avons établi et résolu l'équation de Dyson pour la fonction de Green retardée. Ce qui permet de calculer la densité d'états pour un fil quantique homogène puis inhomogène. Dans le cas d'un paramètre d'interaction homogène, l'effet des impuretés modifie le profil de la densité d'états. Dans le cas d'un paramètre d'interaction inhomogène, le calcul de la densité d'états est plus difficile et une approche numérique est indispensable.

Page generated in 0.0686 seconds