Spelling suggestions: "subject:"fracture 2analysis"" "subject:"fracture 3analysis""
11 |
Rock damage caused by underground excavation and meteorite impactsBäckström, Ann January 2008 (has links)
The intent of this thesis is to contribute to the understanding of the origin of fractures in rock. The man-made fracturing from engineering activities in crystalline rock as well as the fracturing induced by the natural process of meteorite impacts is studied by means of various characterization methods. In contrast to engineering induced rock fracturing, where the goal usually is to minimize rock damage, meteorite impacts cause abundant fracturing in the surrounding bedrock. In a rock mass the interactions of fractures on the microscopic scale (mm-cm scale) influence fractures on the mesoscopic scale (dm-m scale) as well as the interaction of the mesocopic fractures influencing fractures on the macroscopic scale (m-km scale). Thus, among several methods used on different scales, two characterization tools have been developed further. This investigation ranges from the investigation of micro-fracturing in ultra-brittle rock on laboratory scale to the remote sensing of fractures in large scale structures, such as meteorite impacts. On the microscopic scale, the role of fractures pre-existing to the laboratory testing is observed to affect the development of new fractures. On the mesoscopic scale, the evaluation of the geometric information from 3D-laser scanning has been further developed for the characterisation of fractures from tunnelling and to evaluate the efficiency of the tunnel blasting technique in crystalline rock. By combining information on: i) the overbreak and underbreak; ii) the orientation and visibility of blasting drillholes and; iii) the natural and blasting fractures in three dimensions; a analysis of the rock mass can be made. This analysis of the rock mass is much deeper than usually obtained in rock engineering for site characterization in relation to the blasting technique can be obtained based on the new data acquisition. Finally, the estimation of fracturing in and around two meteorite impact structures has been used to reach a deeper understanding of the relation between fracture, their water content and the electric properties of the rock mass. A correlation between electric resistivity and fracture frequency in highly fractured crystalline rock has been developed and applied to potential impact crater structures. The results presented in this thesis enables more accurate modelling of rock fractures, both supporting rock engineering design and interpretation of meteorite impact phenomena. / QC 20100709
|
12 |
Failure Analysis of Brazed Joints Using the CZM ApproachKarimi Ghovanlou, Morvarid 14 September 2011 (has links)
Brazing, as a type of joining process, is widely used in manufacturing industries to join individual components of a structure. Structural reliability of a brazed assembly is strongly dependent on the joint mechanical properties. In the present work, mechanical reliability of low carbon steel brazed joints with copper filler metal is investigated and a methodology for failure analysis of brazed joints using the cohesive zone model (CZM) is presented.
Mechanical reliability of the brazed joints is characterized by strength and toughness. Uniaxial and biaxial strengths of the joints are evaluated experimentally and estimated by finite element method using the ABAQUS software. Microstructural analysis of the joint fracture surfaces reveals different failure mechanisms of dimple rupture and dendritic failure. Resistance of the brazed joints against crack propagation, evaluated by the single-parameter fracture toughness criterion, shows dependency on the specimen geometry and loading configuration.
Fracture of the brazed joints and the subsequent ductile tearing process are investigated using a two-parameter CZM. The characterizing model parameters of the cohesive strength and cohesive energy are identified by a four-point bend fracture test accompanied with corresponding FE simulation. Using the characterized CZM, the joint fracture behavior under tensile loading is well estimated. Predictability of the developed cohesive zone FE model for fracture analysis of brazed joints independent of geometry and loading configuration is validated.
The developed cohesive zone FE model is extended to fatigue crack growth analysis in brazed joints. A cyclic damage evolution law is implemented into the cohesive zone constitutive model to irreversibly account for the joint stiffness degradation over the number of cycles. Fatigue failure behavior of the brazed joints is characterized by performing fully reversed strain controlled cyclic tests. The damage law parameters are calibrated based on the analytical solutions and the experimental fatigue crack growth data. The characterized irreversible CZM shows applicability to fatigue crack growth life prediction of brazed joints.
|
13 |
Failure Analysis of Brazed Joints Using the CZM ApproachKarimi Ghovanlou, Morvarid 14 September 2011 (has links)
Brazing, as a type of joining process, is widely used in manufacturing industries to join individual components of a structure. Structural reliability of a brazed assembly is strongly dependent on the joint mechanical properties. In the present work, mechanical reliability of low carbon steel brazed joints with copper filler metal is investigated and a methodology for failure analysis of brazed joints using the cohesive zone model (CZM) is presented.
Mechanical reliability of the brazed joints is characterized by strength and toughness. Uniaxial and biaxial strengths of the joints are evaluated experimentally and estimated by finite element method using the ABAQUS software. Microstructural analysis of the joint fracture surfaces reveals different failure mechanisms of dimple rupture and dendritic failure. Resistance of the brazed joints against crack propagation, evaluated by the single-parameter fracture toughness criterion, shows dependency on the specimen geometry and loading configuration.
Fracture of the brazed joints and the subsequent ductile tearing process are investigated using a two-parameter CZM. The characterizing model parameters of the cohesive strength and cohesive energy are identified by a four-point bend fracture test accompanied with corresponding FE simulation. Using the characterized CZM, the joint fracture behavior under tensile loading is well estimated. Predictability of the developed cohesive zone FE model for fracture analysis of brazed joints independent of geometry and loading configuration is validated.
The developed cohesive zone FE model is extended to fatigue crack growth analysis in brazed joints. A cyclic damage evolution law is implemented into the cohesive zone constitutive model to irreversibly account for the joint stiffness degradation over the number of cycles. Fatigue failure behavior of the brazed joints is characterized by performing fully reversed strain controlled cyclic tests. The damage law parameters are calibrated based on the analytical solutions and the experimental fatigue crack growth data. The characterized irreversible CZM shows applicability to fatigue crack growth life prediction of brazed joints.
|
14 |
Influência dos parâmetros de tratamento térmico pós-soldagem nas propriedades mecânicas e na microestrutura de um tubo da liga ASTM A 335 Gr P91 (9Cr1Mo) / Influence of post welding heat treatment parameters on mechanical properties and microstructure of a steel pipe ASTM A 335 Gr P91Emerson Andre Pinto Bento 06 February 2015 (has links)
A importância das indústrias de cana-de-açúcar no cenário nacional cresce exponencialmente, desde sua origem. Porém nas últimas três décadas este tipo de indústria deixou de ser tipicamente familiar e passou a produzir em grande escala açúcar, etanol, produtos químicos derivados, levedura e planta de CO2 (para indústria de bebida e ou alimentos), além da venda do excedente da energia que é gerada na própria indústria. Um dos principais equipamentos em uma usina de açúcar e álcool é a caldeira, nome popular dado ao vaso de pressão que gera vapor a partir do aquecimento da água em um ambiente de alta pressão. Este calor é usado como fonte para produção de energia. Os aços ligados ao Cr e Mo têm sido cada vez mais aplicada neste tipo de equipamento. O presente trabalho tem por objetivo entender a influência dos parâmetros de tratamento térmico pós-soldagem nas propriedades mecânicas e na microestrutura de um tubo sem costura de aço ASTM A 335 Gr P91, através da determinação dos valores de: resistência à tração, limite de escoamento, percentual de alongamento, dureza, tenacidade à fratura e CTOD do material base, metal de solda e zona termicamente afetada (ZTA) da região soldada de tubos unidos por solda. Para a realização desta pesquisa serão aplicados os conceitos da teoria da mecânica da fratura elasto-plástica (Crack Tip Open Displacement, CTOD) e os conceitos de comportamento mecânico dos materiais, para o estudo da influência dos parâmetros de tratamento térmico pós-soldagem. / The importance of sugar cane industries on the national scene grows exponentially since its origin. But in the last three decades these became from cottage industries to large-scale production of Ethanol, Chemicals derivatives, yeast and plant CO2 (for food or drink industry). One of the main equipment in a sugar and alcohol plant is the boiler, popular name given to the pressure vessel that generates steam from the heating of water in a high pressure environment. This is used as heat source for energy production. One of the alloy that has been increasingly applied in projects of this equipment are martensitic steels (Cr Mo alloys). The present study aims to understand the influence of post weld heat treatment parameter´s on mechanical properties and microstructure of a seamless tube, steel ASTM 335 Gr P91, the determination of values of tensile strength, yield strength, percentage of elongation, hardness, fracture toughness and CTOD of the base material, weld metal and heat affected zone (HAZ) of the welded region of tubes welded together. In this research the concepts of the theory of mechanics of elastic-plastic fracture (Crack Tip Open Displacement, CTOD) and the concepts of mechanical behavior of materials will be applied.
|
15 |
Failure of Sandwich Structures with Sub-Interface DamageShipsha, Andrey January 2001 (has links)
No description available.
|
16 |
Fracture And Fatigue Behavior Of Concrete-Concrete Interfaces Using Acoustic Emission, Digital Image Correlation And Micro-Indentation TechniquesShah, Santosh Gopalkrishna 08 1900 (has links)
Currently, the maintenance and repair of civil engineering infrastructures (especially bridges and highways) have become increasingly important, as these structures age and deteriorate. Interface between two different mixes or strengths of concrete also appear in large concrete structures involving mass concreting such as dams, nuclear containment vessels, cooling towers etc., since joints between successive lifts are inevitable. These joints and interfaces are potential sites for crack formation, leading to weakening of mechanical strength and subsequent failure. In case of a bi-material interface, the stress singularities are oscillatory in nature and the fracture behavior of a concrete-concrete bi-material interface is much more complicated.
A comprehensive experimental work has been undertaken for characterization of the behavior of different concrete-concrete interfaces under static and fatigue loading. The effect of specimen size on the concrete-concrete interfaces is studied and the non-linear fracture parameters such as fracture energy, mode I fracture toughness, critical crack tip opening displacement, critical crack length, length of process zone, brittleness number, size of process zone, crack growth resistance curve and tension softening diagram. These parameters are required for modeling the concrete-concrete interfaces in non-linear finite element analysis.
Presently, the advanced non-destructive techniques namely acoustic emission, digital image correlation and micro-indentation have great capabilities to characterize the fracture behavior. The damage in plain concrete and concrete interface specimens is characterized both qualitatively and quantitatively using acoustic emission technique by measuring the width of fracture process zone and width of damage zones. The DIC technique is used to obtain the fracture parameters such as mode I and mode II fracture toughness and critical energy release rate. The micro-mechanical properties are obtained by performing depth-sensing micro-indentation tests on the concrete-concrete interfaces.
Civil engineering structures such as long-span bridges, offshore structures, airport pavements and gravity dams are frequently subjected to variable-amplitude cyclic loadings in actual conditions. Hence, in order to understand the fracture behaviour under fatigue loading, the fatigue crack growth in plain concrete and concrete-concrete interface is also studied using the acoustic emission technique. An attempt is made to apply the Paris’ law, which is applicable to mechanical behaviour of metals, for acoustic emission count data.
All these studies show that, as the difference in the compressive strength of concrete on either side of the interface increases, the load carrying capacity decreases and the fracture parameters indicate the increase in the brittleness of the specimens. It is concluded that the repair concrete should be selected in such a way that its elastic properties are as those of the parent concrete.
|
17 |
Kinematic and Tectonic Significance of the Fold- and Fault- Related Fracture Systems in the Zagros Mountains, Southern IranMobasher, Katayoun 02 May 2007 (has links)
Enhancement methods applied on various satellite images (ASTER, ETM and RADAR SAT-1) facilitated the identification and mapping of tectonic fractures in the Zagros fold-and-thrust belt in southwest Iran. The results of the fracture analysis on these enhanced images reveal four principal fracture sets within each fold structure: (i) an axial set defined by normal faults oriented parallel to the fold axial trace, (ii) a cross-axial, extensional fracture set oriented perpendicular to the fold axial trace, (iii) and two sets of intersecting shear fractures, oriented at an acute angle to the cross-axial set. Study of the enhanced images also revealed five fracture sets along the Kazerun fault zone: (i) Riedel R- and R'-shear fracture sets, (ii) extensional T fracture set oriented at a high angle to the trace of the main Kazerun fault, (iii) oblique, synthetic P-shear fracture set, at a low angle to the trace of the main Kazerun fault, and (iv) synthetic Y-shear displacement fracture set, oriented sub-parallel to the main trace of the fault. The estimated mean azimuths of the shortening that developed the fold- and fault-related fracture systems are remarkably close, and are oriented perpendicular to the general NW-SE trend of the Zagros fold-and-thrust belt. The sampling and analysis of the fold- and fault-related fracture systems were done in a GIS environment. This study shows that an analysis of enhanced satellite images can reveal significant information on the deformation style, timing, and kinematics of the Zagros fold-and-thrust belt. This study suggests that the Zagros orogenic belt, which has mainly been forming since Miocene, due to the convergence of the Iranian and Arabian subplates, has evolved both by thin- and thick-skinned tectonics. Reconfiguration of the Precambrian basement blocks, and the ensuing slip and rotation along the Precambrian faults during the Zagros orogeny, have deformed the folds, and redistributed the fold-related fractures through rigid-body rotation.
|
18 |
Influence of fundamental material properties and air void structure on moisture damage of asphalt mixesArambula Mercado, Edith 15 May 2009 (has links)
Moisture damage in asphalt mixes refers to the loss of serviceability due to the presence of
moisture. The extent of moisture damage, also called moisture susceptibility, depends on internal
and external factors. The internal factors relate to the properties of the materials and the
microstructure distribution, while the external factors include the environmental conditions,
production and construction practices, pavement design, and traffic level.
The majority of the research on moisture damage is based on the hypothesis that
infiltration of surface water is the main source of moisture. Of the two other principal
mechanisms of water transport, permeation of water vapor and capillary rise of subsurface water,
the latter has been least explored. A laboratory test and analysis methods based on X-ray
computed tomography (CT) were established to assess the capillary rise of water. The amount
and size of air voids filled with water were used in the capillary rise equation to estimate the
distribution of the contact angles between the water and the mastic. The results were able to
show the influence of air void size on capillary rise and contact angles.
The relationship between air void structure and moisture susceptibility was evaluated
using a fundamental fracture model based on dissipated energy of viscoelastic materials.
Detailed description is provided in this dissertation on the deduction of the model equation, the
selection of the model parameters, and the required testing protocols. The model parameters
were obtained using mechanical tests and surface energy measurements. The microstructure of
asphalt mixes prepared in the laboratory having different air void structures was captured using
X-ray CT, and image analysis techniques were used to quantify the air void structure and air
void connectivity. The air void structure was found to influence the mix resistance to moisture
damage. To validate the fracture model, asphalt mixes with known field performance were tested.
The results demonstrated that the fracture model is an effective tool to characterize moisture
susceptibility. In addition, the model showed good correlation with the reported field
performance of the asphalt mixes.
The findings of this study will be useful to highway engineers to evaluate asphalt mixes
with alternative mix designs and internal air void structures and to estimate the rate of moisture
infiltration in order to maximize the resistance of asphalt mixes to moisture damage.
|
19 |
Failure of Sandwich Structures with Sub-Interface DamageShipsha, Andrey January 2001 (has links)
No description available.
|
20 |
UPNS4D+ – Neue Ansätze für die Kluftflächen- und HaufwerksanalyseDonner, Ralf, Geier, Andreas, John, André 28 September 2017 (has links)
Der Zugang zu wirtschaftsstrategischen Bodenschätzen ist für moderne Industriegesellschaften von essenzieller Bedeutung. Für Deutschland besteht für die Versorgung mit nichtenergetischen Rohstoffen wie Stahlveredlern und Seltenen-Erden eine weitgehende Importabhängigkeit. Vorhandene heimische Lagerstätten weisen eine komplexe geologische Struktur mit geringen Abbaumächtigkeiten in großen Teufen auf. Um diese Lagerstätten nutzen zu können, soll ein untertagetaugliches Positionierungs- und Navigationssystem, UPNS4D+, für die Erkundung der Lagerstätte entwickelt und als Demonstrationssystem gebaut werden. Das Institut für Markscheidewesen und Geodäsie der TU Bergakademie ist Teil des Entwicklerkonsortiums. Es ist zuständig für die markscheiderische und bergmännische Nutzbarkeit der mit dem Erkundungssystem gewonnen Daten. Entsprechend dem aktuellen Arbeitsfortschritt werden im vorliegenden Beitrag die Lösungen für die Kluftflächen- und die Haufwerksanalyse vorgestellt. Die teilautomatisierte Haufwerksanalyse dient der Detektion großer Partikel und deren Lagebestimmung in einem relativen Koordinatensystem. / Access to strategic mineral resources is essential for modern industrial societies. Germany is largely dependent on imports of non-energy raw materials such as steel refiners and rare earth elements. Existing indigenous deposits have a complex geological structure with low extraction thickness in large depths. In order to use these deposits, an underground positioning and navigation system, namely UPNS4D+, as a demonstration system has to be developed for deposit exploration. As part of the developer consortium, the Institute for Mining Surveying and Geodesy of the TU Bergakademie Freiberg is responsible for the utilization of the acquired data in the field of mining. According to the current work status, in this paper the solutions for rock fracture analysis and grain size analysis are presented. The partly automated grain size analysis is used for the detection of large particles and their position in a relative coordinate system.
|
Page generated in 0.0616 seconds