• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 9
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 49
  • 49
  • 40
  • 28
  • 21
  • 20
  • 12
  • 12
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Development and Optimization of Kinetic Target-Guided Synthesis Approaches Targeting Protein-Protein Interactions of the Bcl-2 Family

Kulkarni, Sameer Shamrao 01 January 2012 (has links)
Kinetic target-guided synthesis (TGS) and in situ click chemistry are among unconventional discovery strategies having the potential to streamline the development of protein-protein interaction modulators (PPIMs). In kinetic TGS and in situ click chemistry, the target is directly involved in the assembly of its own potent, bidentate ligand from a pool of reactive fragments. Herein, we report the use and validation of kinetic TGS based on the sulfo-click reaction between thio acids and sulfonyl azides as a screening and synthesis platform for the identification of high-quality PPIMs. Starting from a randomly designed library consisting of nine thio acids and nine sulfonyl azides leading to eighty one potential acylsulfonamides, the target protein, Bcl-XL selectively assembled four PPIMs, acylsulfonamides SZ4TA2, SZ7TA2, SZ9TA1, and SZ9TA5, which have been shown to modulate Bcl-XL/BH3 interactions. To further investigate the Bcl-XL templation effect, control experiments were carried out using two mutants of Bcl-XL. In one mutant, phenylalanine Phe131 and aspartic acid Asp133, which are critical for the BH3 domain binding, have been substituted by alanines, while arginine Arg139, a residue identified to play a crucial role in the binding of ABT-737, a BH3 mimetic, has been replaced by an alanine in the other mutant. Incubation of these mutants with the reactive fragments and subsequent LC/MS-SIM analysis confirmed that these building block combinations yield the corresponding acylsulfonamides at the BH3 binding site, the actual "hot spot" of Bcl-XL. These results validate kinetic TGS using the sulfo-click reaction as a valuable tool for the straightforward identification of high-quality PPIMs. Protein-protein interactions of the Bcl-2 family have been extensively investigated and the anti-apoptotic proteins (Bcl-2, Bcl-XL, and Mcl-1) have been validated as crucial targets for the discovery of potential anti-cancer agents. At the outset, Bcl-2 and Bcl-XL were considered to play an important role in the regulation of apoptosis. Accordingly, several small molecule inhibitors targeting Bcl-2 and/or Bcl-XL proteins were primarily designed. A series of acylsulfonamides targeting these proteins were reported by Abbott laboratories, ABT-737 and ABT-263 being the most potent candidates. Remarkably, these molecules were found to exhibit weaker binding affinities against Mcl-1, another anti-apoptotic protein. Further experimental evidence suggests that, inhibitors targeting Mcl-1 selectively or in combination with other anti-apoptotic proteins would lead to desired therapeutic effect. As a result, numerous small molecules displaying activity against Mcl-1 have been identified so far. Specifically, acylsulfonamides derived from structure activity relationship by interligand nuclear overhauser effect (SAR by ILOEs), a fragment-based approach, have been recently reported with binding affinities in the nanomolar range. In the meantime, we have reported that the kinetic TGS approach can also be applied to identify acylsulfonamides as PPIMs targeting Bcl-XL. Taken together, structurally novel acylsulfonamides can be potentially discovered as Mcl-1 inhibitors using the kinetic TGS approach. Thus, a library of thirty one sulfonyl azides and ten thio acids providing three hundred and ten potential products was screened against Mcl-1 and the kinetic TGS hits were identified. Subsequently, control experiments involving Bim BH3 peptide were conducted to confirm that the fragments are assembled at the binding site of the protein. The kinetic TGS hits were then synthesized and subjected to the fluorescence polarization assay. Gratifyingly, activities in single digit micromolar range were detected, demonstrating that the sulfo-click kinetic TGS approach can also be used for screening and identification of acylsulfonamides as PPIMs targeting Mcl-1. The amide bond serves as one of nature's most fundamental functional group and is observed in a large number of organic and biological molecules. Traditionally, the amide functionality is introduced in a molecule through coupling of an amine and an activated carboxylic acid. Recently, various alternative methods have been reported wherein, the aldehydes or alcohols are oxidized using transition metal catalysts and are treated with amines to transform into the corresponding amides. These transformations however, require specially designed catalysts, long reaction times and high temperatures. We herein describe a practical and efficient amidation reaction involving aromatic aldehydes and various azides under mild basic conditions. A broad spectrum of functional groups was tolerated, demonstrating the scope of the reaction. Consequently, the amides were synthesized in moderate to excellent yields, presenting an attractive alternative to the currently available synthetic methods.
12

Using in situ click chemistry to modulate protein-protein interactions: Bcl-XL as a case study

Malmgren, Lisa M 01 June 2007 (has links)
Protein-protein interactions are central to most biological processes. Although in the field of drug discovery there is a great interest in targeting protein-protein interactions, the discovery and development of small-molecules, which effect these interactions has been challenging. The purpose of this project is to determine if in situ click chemistry is a practical approach towards testing whether Bcl-XL is capable of assembling it's own inhibitory compounds. Abbott laboratories developed compound ABT-737, which binds with high affinity (Ki < 1 nM) to the binding sites of Bcl-XL.³⁶ Based on ABT-737, two acetylene anchor molecules AM3 and AM4 have been synthesized. These anchor molecules are distinguished by the reactivity of the their carbon-carbon triple bond. Compound AM3 contains an electron withdrawing carbonyl in the alpha-position to the acetylene resulting in an activating effect towards the [1,3]-dipolar cycloaddition compared to compound AM4. To determine the reactivity of the activated system, ¹ H-NMR kinetic studies were performed to compare the relative rates of these two systems by reacting model alkynes 1,2,3, and 4 with azide AZ7. It was shown that the activated systems, 1 and 3, produce triazoles in an accelerated rate compared to the unactivated systems 2 and 3. To test for the self-assembly of inhibitory triazoles, the acetylenes AM3 and AM4 were incubated with Bcl-XL and 14 azide building blocks (AZ1-AZ12) for 12 hours at 37 degrees C. Subjecting these mixtures to LC/MS-SIM led to the discovery of two hit compounds, 35 and 36, of which 35 has been chemically synthesized confirming the hit. Future work includes the synthesis of all hit compounds. Since hit triazoles can be syn or anti, both need to be synthesized for each hit to investigate which regioisomer Bcl-XL generates. Tests to confirm if hit compounds are actually modulating Bcl-XL activity will be done using conventional bio-assays. This will validate that Bcl-XL is capable of assembling its own inhibitor via the in situ click chemistry approach to drug discovery.
13

Studies on Application of Silyl Groups in Ring-Closing Metathesis Reactions and Fragment-Based Probe Discovery

Wang, Yikai 19 December 2012 (has links)
In efforts to search for tool compounds that are capable of probing normal and disease-associated biological processes, both quality and identity of the screening collection are very important. Towards this goal, diversity-oriented synthesis (DOS) has been explored for a decade, which aims to populate the chemical space with diverse sets of small molecules distinct from the traditional ones obtained via combinatorial chemistry. In the practice of DOS, macrocyclic ring-closing metathesis (RCM) reactions have been widely used. However, the prediction and control of stereoselectivity of the reaction is often challenging; chemical transformation of the olefin moiety within the product is in general limited. Chapter I of this thesis describes a methodology that addresses both problems simultaneously and thus extends the utility of the RCM reactions. By installing a silyl group at the internal position of one of the olefin termini, the RCM reaction could proceed with high stereoselectivity to afford the (E)-alkenylsiloxane regardless of the intrinsic selectivity of the substrate. The resulting alkenylsiloxane can be transformed to a variety of functionalities in a regiospecific fashion. The conversion of the (E)-alkenylsiloxanes to alkenyl bromides could proceed with inversion of stereochemistry for some substrates allowing the selective access of both the E- and Z-trisubstituted macrocyclic alkenes. It was also found that the silyl group could trap the desired mono-cyclized product by suppressing nonproductive pathways. Chapter II of this thesis describes the application of the concept of DOS in the area of fragment-based drug discovery. Most fragment libraries used to date have been limited to aromatic heterocycles with an underrepresentation of chiral, enantiopure, \(sp^3\)-rich compounds. In order to create a more diverse fragment collection, the build/couple/pair algorithm was adopted. Starting from proline derivatives, a series of bicyclic compounds were obtained with complete sets of stereoisomers and high \(sp^3\) ratio. Efforts are also described toward the generation of diverse fragments using methodology described in Chapter I. The glycogen synthase kinase \((GSK3\beta)\) was selected as the proof-of-concept target for screening the DOS fragments. / Chemistry and Chemical Biology
14

Structural analysis of transcription factors involved in Mycobacterium tuberculosis mycolic acid biosynthesis

Tanina, ABDALKARIM 10 July 2020 (has links) (PDF)
Tuberculosis (TB) remains the leading cause of death due to a single infectious agent with more than 1.5 million people killed each year. In 2018, the World Health Organization (WHO) estimated that one third of the world’s population was infected with Mycobacterium tuberculosis (Mtb), the pathogen responsible for the disease.In 2000, EthR, a mycobacterial transcriptional repressor, was identified as a key modulator of ethionamide (ETH) bioactivation. ETH is one of the main second-line drugs used to treat drug-resistant strains and it is a prodrug that is activated in Mtb by the mono-oxygenase EthA and then inhibits InhA, an enzyme involved in the mycolic acid biosynthesis. In 2009, it was demonstrated that co-administration of ETH with the drug-like inhibitors of EthR was able to boost ETH activity by a factor three in a mouse-model of TB-infection, thus validating EthR protein as a target for a new therapeutic strategy. The first part of this thesis deals with the validation and deep characterization of the solved EthR-ligand structures based on all analysis of how each ligand bind to the EthR. In this section, based on the study of both co-crystal structures and the physicochemical properties of the ligands, we have rationalized the information currently available and understood the interaction of all EthR inhibitors in order to lead to more effective inhibitor design.More recently, another mycobaterial repressor, denoted EthR2, was identified as a putative target that appears to be functionally comparable to EthR (then the locus has been termed EthA2/EthR2, due to its similarity to the EthA/EthR locus). Furthermore, a spiroisoxazoline family of small-molecules, generically denoted as SMARt, has been identified as effective ligand of EthR2. However, according to the data present in the literature, this spiroisoxazoline family can also bind to the former EthR. In order to investigate this proposition, I have solved these small molecules in complex with EthR and compared their binding interactions to the EthR2 protein as well. The opportunity for the design small-molecules is capable of targeting both repressors, thereby opening the way to a dual-target approach.Finally, the third part of this thesis is devoted to the mycobacterial transcriptional factor MabR (Rv2242). Several studies identified this protein as a regulatory transcription factor of the fatty acid synthase II operon, which is mainly responsible for the mycolic acid biosynthesis in Mtb. I therefore purified to homogeneity and characterized the MabR protein as well as I determined the crystal structure of its C-terminal part. Finally, the functional role of MabR is largely discussed, and the way on how to interfere with its DNA binding ability is commented with respect to our results. / Doctorat en Sciences biomédicales et pharmaceutiques (Pharmacie) / info:eu-repo/semantics/nonPublished
15

Understanding biological motions with improved resolution and accuracy by NMR

Kharchenko, Vladlena 12 1900 (has links)
Biological motion constitutes a key and indispensable element of all biomolecules, as dynamics tightly link spatial architecture with function. Several computational and experimental techniques have been developed to study biomolecular dynamics. Nevertheless, few label-free and atomic or sub-atomic resolution techniques are able to capture biological motions at close to native conditions. Indeed, the only label-free technique giving atomic level access to dynamics from picoseconds down to seconds is nuclear magnetic resonance (NMR) spectroscopy. In this dissertation, I identify the imperfections and inaccuracies accompanying the routine and well-accepted methods of probing protein dynamics via 15N spin relaxation NMR measurements. Subsequently, I propose and develop solutions and experimental approaches to overcome the limitations and eliminate artefacts. The routine procedures applying heavy water as an internal locking standard lead to artifacts in every type of relaxation rate of 15N amides due to reaction with exchangeable deuterons. The deviations from correct values are most pronounced for highly dynamic and exposed protein fragments. I introduce a novel set of directly detected 15N spin relaxation experiments yielding an unprecedent resolution resolving the signal overlap, although of lower sensitivity. I propose a more accurate. Finally, I present how the 15N spin relaxation techniques and improved routines can be applied to understand biological processes that cannot be described without monitoring molecular motions. Using the example of human BTB domains, which are directly linked to human cancer, I demonstrate the ability to detect cryptic binding sites on the surfaces of proteins. The cryptic binding site was verified by a comprehensive NMR-monitored fragment-based screening that revealed a hit-rate only for MIZ1BTB, which was the only protein displaying slow segmental motions. I also managed to track subtle and biologically-relevant dynamic modulations of an exposed H3 histone tail affected by H1 histones or other histone variants. Enhancement of H3 tail dynamics led to increased H3K36 methylation, while restriction of motions resulted in the opposite effect. These observed correlations unequivocally support the essential role of molecular mobility in biological functions.
16

Small molecule inhibition of immunoregulatory protein-protein interactions

Sheehy, Daniel Francis 22 September 2023 (has links)
Selective molecular recognition between proteins is a fundamental event in biological processes that governs cellular growth, function, survival, and differentiation. The immune system, for example, is a complex network of cellular processes regulated by protein-protein interactions (PPIs) between cells, receptors, and secreted molecules. Generating and maintaining an appropriate immune response and regulation requires coordination across many cell types and components, while dysregulation of these interactions can lead to disease. A major obstacle in small molecule therapy development towards these PPIs is their restriction to small protein-protein interfaces and a well-defined hydrophobic pocket. Most PPIs have large contact surface areas and lack traditional binding pockets making them historically challenging for the development of potent small-molecule modulators. To address this limitation, we utilized two binding-based approaches, a unique peptidomimetic fragment library and high-throughput small-molecule microarrays to design and discover molecules that target three important immunoregulatory PPIs: the DQ8-insulin complex, the KEAP1-Nrf2 complex, and the IL-4/IL-4R receptor complex. Many autoimmune diseases involve the ternary PPI complex between immunogenic peptides presented to T cell receptors through the major histocompatibility complex (MHC). Inhibiting this interaction may provide a therapeutic approach for delaying or preventing disease. To target type 1 diabetes, we developed a unique library consisting of 125 fragment-sized molecules that mimic glutamic acid and tyrosine residues from the immunogenic insulin B:9-23 peptide responsible for CD4+ T cell activation. Screening of our library after generation of the MHC class II protein responsible for insulin B:9-23 presentation, DQ8, has resulted in identification of 15 lead fragment compounds to date. Application of our fragment library towards pharmaceutically validated target for inflammation and neurogenerative diseases, the Kelch like ECH-associated protein 1 (KEAP1) and nuclear factor erythroid 2 like 2 (Nrf2), resulted in a 30% hit rate. These are promising results for the further development of selective compounds to inhibit these interactions. For treating inflammatory diseases, such as asthma or cancer, we report the identification of a first-in-class small molecule inhibitor to the cytokine Interleukin-4 (IL-4). The PPI between IL-4 and its receptor complex (IL-4Rα) contains no conventional binding pockets and binding is driven through clusters of complementary residues. Through the combination of small-molecule microarrays and cell-based assays we identified the lead compound, Nico-52, with micromolar inhibitory potency and micromolar affinity. A library of 60 analogs of Nico-52 was synthesized and preliminary structure activity relationships suggest amenability of the p-fluorophenyl substituent and importance of the diol substituent to retain binding potency. These studies resulted in development of a more potent inhibitor to IL-4 with a p-aniline substituent, which could be developed into a targeting ligand to deliver additional therapeutic payloads to an IL-4 enriched microenvironment. In summary, we have developed a peptidomimetic small molecule fragment library as a toolkit for screening against challenging PPI targets with applications towards type 1 diabetes and developed a first-in-class small molecule inhibitor towards IL-4 with applications towards inflammatory diseases. / 2025-09-21T00:00:00Z
17

Investigation and Characterisation of Protein-Ligand Interactions: SRA-Ribonucleic Acid Recognition and Anti-Microbial Drug Discovery

Davis, Caroline M. 10 September 2015 (has links)
No description available.
18

Synthesis of Substituted Pyrrolidines / Syntes av substituerade pyrrolidiner

Sjölin, Olof January 2016 (has links)
The task of medicinal chemists in a drug discoveryproject is to synthesize/design analogues to the screening hits, simultaneouslyincreasing target potency and optimizing the pharmacological properties.  This requires a wide selection of moleculesto be synthesized, where both synthetic feasibility and price of startingmaterials are of great importance. In this work, a synthetic pathway from cheapand readily available starting materials to highly modifiable 2,4-disubstitutedpyrrolidines is demonstrated. Previously reported procedures to similarpyrrolidines use expensive catalysts, requires harsh conditions and requiresnon-commercially available starting materials. The suggested pathway herein has demonstrated great possibility forvariation in the 4-position, including fluoro, difluoro, nitrile and alcoholfunctional groups. There are several areas in which the synthesis can beimproved and expanded upon. Improvements can be made by optimizing thedescribed reaction conditions and further expansion of possible modificationsin both 2- and 4-position could be explored.
19

Fragment-based approaches to targeting EthR from mycobacterium tuberculosis

McConnell, Brendan Neil January 2019 (has links)
Tuberculosis affects millions of people worldwide every year. The current treatment for TB is divided into a regimen of both first- and second-line drugs, where first-line treatments are more tolerated and require shorter treatment lengths. With rising levels of resistance, alternative treatment regimes are urgently needed to fight this disease. Ethionamide, a second-line drug is administered as a prodrug which is activated in vivo by the enzyme EthA, which is in turn regulated by EthR. The disruption of the action of EthR could lead to novel therapeutics which could enhance the efficacy of ethionamide, and raise it to a first-line treatment. The work reported in this thesis examines the elaboration of three chemical scaffolds using fragment-based approaches to develop novel inhibitors capable of disrupting the EthR-DNA interaction. The first scaffold, 5-(furan-2-yl)isoxazole was investigated by fragment-merging approaches and produced compounds with the best of these having a KD of 7.4 uM. The second scaffold, an aryl sulfone was elaborated using fragment-merging strategies. This led to several modifications of the fragment, leading to several variants with KDs around 20 uM. With both of these series the affinity could not be improved below 10 uM and due to the synthetic complexity a further scaffold was prioritised. The third scaffold was explored was a 4-(4-(trifluoromethyl)phenyl)piperazine using fragmentgrowing from the NH of the piperazine to probe deeper into the EthR binding pocket. In addition to this, SAR around the 4-(trifluoromethyl)phenyl group was assessed to explore the interactions with EthR. These modifications led to compounds with nanomolar IC50s. A range of compounds were then screened by REMAssay to determine the boosting effect on ethionamide, and this identified compounds with up to 30 times boosting in the ethionamide MIC. The final chapter examines a concept where compounds were designed to exploit the dimeric nature of EthR by linking two chemical warheads with a flexible linker. These compounds are examined using mass spectrometry to investigate the stoichiometry of the interaction to provide insight into the binding of these extended compounds and exploring an alternative strategy to inhibit EthR. The work in this thesis demonstrated the successful use of fragment-based approaches for development of novel EthR inhibitors which showed significant ethionamide boosting effects.
20

Progress of Weak Affinity Chromatography as a Tool in Drug Development

Meiby, Elinor January 2013 (has links)
Weak Affinity Chromatography (WAC) is a technology that was developed to analyse weak (KD &gt; 10-5 M) although selective interactions between biomolecules. The focus of this thesis was to develop this method for various applications in the drug development process.   Fragment Based Drug Discovery is a new approach in finding new small molecular drugs. Here, relatively small libraries (a few hundreds to a few thousands of compounds) of fragments (150 – 300 Da) are screened against the target. Fragment hits are then developed into lead molecules by linking, growing or merging fragments binding to different locations of the protein’s active site. However, due to the weakly binding nature of fragments, methods that are able to detect very weak binding events are needed. In this thesis, WAC is presented as a new robust and highly reproducible technology for fragment screening. The technology is demonstrated against a number of different protein targets – proteases, kinases, chaperones and protein-protein interaction (PPI) targets. Comparison of data from fragment screening of 111 fragments by WAC and other more established technologies for fragment screening, such as surface plasmon resonance (SPR) and nuclear magnetic resonance (NMR), validates WAC as a screening technology. It also points at the importance of performing fragment screening by multiple methods as they complement each other.   Other applications of WAC in drug development are also presented. The method can be used for chiral separations of racemic mixtures during fragment screening, which enables affinity measurements of individual enantiomers binding to the target of interest. Further, analysis of crude reaction mixtures is shown. By these procedures, the affinity of the product can be assessed directly after synthesis without any time-consuming purification steps. In addition, a high performance liquid chromatography (HPLC) system for highly efficient drug partition studies was developed by stable immobilization of lipid bilayer disks – lipodisks – on a high performance silica support material. These lipodisks are recognized model membranes for drug partition studies. A WAC system with incorporated membrane proteins into immobilized lipodisks has also been produced and evaluated with the ultimate objective to study affinity interactions between ligands and membrane proteins. / Ett läkemedel utövar sin funktion genom att påverka aktiviteten hos ett protein i kroppen då det binder till dess aktiva säte. Förändringen i aktivitet leder till fysiologiska förändringar i kroppen beroende på vilken funktion proteinet har. Med läkemedelsmolekyl avses här en liten organisk molekyl. Fragment-baserad läkemedelsutveckling är en ny metod for att ta fram nya läkemedel. Metoden fungerar genom att man bygger läkemedelsmolekyler utifrån mindre fragment som binder till målproteinet. Fragmenten hittar man genom att screena hela bibliotek av olika fragment mot samma målprotein för att urskilja de som binder till proteinets aktiva säte. Fördelen med den här metoden är bl. a. att med mindre molekyler som utgångspunkt kan en större del av antalet möjliga kombinationer av atomer representeras med ett mindre antal fragment än för större molekyler. Normalt utgörs ett fragmentbibliotek enbart av några hundra till några tusen substanser. Eftersom fragmenten är små har de få interaktionspunker och binder relativt svagt. De svaga bindningarna är svåra att se och mycket känsliga metoder behövs.   Svagaffinitetskromatografi är en vätskekromatografisk metod som utvecklades för att studera svaga men mycket selektiva bindningar mellan biomolekyler. Den här avhandlingen syftar till att utveckla metoden för olika användningsområden inom läkemedelsutveckling, främst som en ny metod för fragment-screening. Här mäter man interaktionen mellan ett protein och ett fragment. Proteinet kopplas till ett material som sedan packas i en kolonn i formen av en cylinder. När provet pumpas igenom kolonnen kommer de analyter med affinitet till proteinets aktiva säte att fördröjas på kolonnen i relation till hur starkt de interagerar med målproteinet.   I den här avhandlingen presenteras fragment-screening med svagaffinitetskromatografi gentemot ett antal olika typer av målproteiner. Resultatet överensstämmer väl med andra metoder för fragment-screening. Analys av reaktionsblandningar med svagaffinitetskromatografi demonstreras också. Därmed kan bindningen mellan en produkt i en reaktionsblandning och ett målprotein mätas direkt utan föregående uppreningssteg av reaktionsblandningen. Lipodiskar är små diskformade modellmembran som kan användas för att bl. a. mäta hur effektivt läkemedlet tas upp i kroppen vid behandling. Ett system med immobiliserade lipodiskar i en kolonn utvecklades med det framtida målet att kunna arbeta med membranproteiner med svagaffinitetskromatografi.   Detta arbete utgör en del i att utveckla svagaffinitetskromatografi som en lättillgänglig och relativt billig metod för användning inom industrin och akademin för läkemedelsutveckling.

Page generated in 0.0427 seconds