• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 6
  • 1
  • Tagged with
  • 33
  • 33
  • 33
  • 11
  • 11
  • 10
  • 9
  • 9
  • 8
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A New Multiple Input Random Excitation Technique Utilizing Pneumatic Cylinders

Sharma, Akhil 12 September 2016 (has links)
No description available.
22

Técnicas de cancelamento de massa em análise modal experimental / Mass cancellation techniques in experimental modal analysis

Libardi, Ana Lúcia 25 August 2000 (has links)
Esta dissertação tem como objetivo principal o estudo das técnicas de cancelamento de massa, bem como suas aplicações em análise modal experimental. Estas técnicas são utilizadas na redução de determinados erros nos dados de resposta em frequência da estrutura sob estudo. Estes erros são por sua vez causados por fontes adicionais de inércia, tais como acelerômetros e transdutores de força, que são frequentemente utilizados nos ensaios para o levantamento das características dinâmicas da estrutura. As técnicas de cancelamento de massa estudadas neste trabalho são desenvolvidas a partir de uma modelagem das relações de entrada e saída no domínio da frequência, utilizando-se para tanto as Funções de Resposta em Frequência (FRF), bem como conceitos de subestruturação. Os modelos analíticos utilizados no problema de cancelamento de massa são também aplicados na geração de FRFs desconhecidas para a estrutura sob estudo, a partir de um subconjunto de FRFs medidas com massas adicionais acopladas à estrutura. Os métodos estudados são aplicados a dados obtidos através de simulações numéricas em sistemas discretos, bem como a dados experimentais provenientes de ensaios em estruturas simples. Resultados satisfatórios foram obtidos tanto a partir das simulações numéricas quanto na análise experimental para o problema de cancelamento de massa. Na obtenção de FRFs desconhecidas, verificou-se que os modelos teóricos conduzem a resultados satisfatórios em determinadas situações, e que o ruído encontrado em dados experimentais representa um fator detrimental na utilização das técnicas de cancelamento de massa para o propósito de gerar-se FRF desconhecidas a partir de FRF efetivamente medidas na estrutura sob estudo. / The goal of this dissertation is to develop a study on mass cancellation techniques and their applications in experimental modal analysis. These techniques are commonly employed in the reduction of experimental errors on the structure\'s measured frequency response data. Such errors are in turn caused by extra masses such as accelerometer and force transducers, that are utilized on the measurement of the system\'s Frequency Response Functions (FRF). The mass cancellation techniques studied here are developed through frequency domain input and output relationships as well as substructuring concepts. The analytical models employed in the mass cancellation problem are also applied in obtaining unknown FRF from a subset of measured FRF that are measured with extra masses attached to the structure. The methods studied are applied to numerically simulated data from discrete systems, as well as to experimental data coming from modal tests performed on simple structures. Reasonably good results are obtained in either the numerical and experimental analysis for the mass cancellation problem. In obtaining unknown FRF data, it was verified that the models generated reasonable results in some circumstances, and that experimental noise is a major source of error in using these mass cancellation techniques for the purpose of obtaining unmeasured data from a subset of measured FRF.
23

Vibration Isolation Of Inertial Measurement Unit

Cinarel, Dilara 01 January 2012 (has links) (PDF)
Sensitive devices are affected by extreme vibration excitations during operation so require isolation from high levels of vibration excitations. When these excitation characteristics of the devices are well known, the vibration isolation can be achieved accurately. However, it is possible to have expected profile information of the excitations with respect to frequency. Therefore, it is practical and useful to implement this information in the design process for vibration isolation. In this thesis, passive vibration isolation technique is examined and a computer code is developed which would assist the isolator selection process. Several sample cases in six degree of freedom are designed for a sample excitation and for sample assumptions defined for an inertial measurement unit. Different optimization methods for design optimizations are initially compared and then different designs are arranged according to the optimization results using isolators from catalogues for these sample cases. In the next step, the probable designs are compared according to their isolator characteristics. Finally, one of these designs are selected for each case, taking into account both the probable location deviations and property deviations of isolators.
24

Técnicas de cancelamento de massa em análise modal experimental / Mass cancellation techniques in experimental modal analysis

Ana Lúcia Libardi 25 August 2000 (has links)
Esta dissertação tem como objetivo principal o estudo das técnicas de cancelamento de massa, bem como suas aplicações em análise modal experimental. Estas técnicas são utilizadas na redução de determinados erros nos dados de resposta em frequência da estrutura sob estudo. Estes erros são por sua vez causados por fontes adicionais de inércia, tais como acelerômetros e transdutores de força, que são frequentemente utilizados nos ensaios para o levantamento das características dinâmicas da estrutura. As técnicas de cancelamento de massa estudadas neste trabalho são desenvolvidas a partir de uma modelagem das relações de entrada e saída no domínio da frequência, utilizando-se para tanto as Funções de Resposta em Frequência (FRF), bem como conceitos de subestruturação. Os modelos analíticos utilizados no problema de cancelamento de massa são também aplicados na geração de FRFs desconhecidas para a estrutura sob estudo, a partir de um subconjunto de FRFs medidas com massas adicionais acopladas à estrutura. Os métodos estudados são aplicados a dados obtidos através de simulações numéricas em sistemas discretos, bem como a dados experimentais provenientes de ensaios em estruturas simples. Resultados satisfatórios foram obtidos tanto a partir das simulações numéricas quanto na análise experimental para o problema de cancelamento de massa. Na obtenção de FRFs desconhecidas, verificou-se que os modelos teóricos conduzem a resultados satisfatórios em determinadas situações, e que o ruído encontrado em dados experimentais representa um fator detrimental na utilização das técnicas de cancelamento de massa para o propósito de gerar-se FRF desconhecidas a partir de FRF efetivamente medidas na estrutura sob estudo. / The goal of this dissertation is to develop a study on mass cancellation techniques and their applications in experimental modal analysis. These techniques are commonly employed in the reduction of experimental errors on the structure\'s measured frequency response data. Such errors are in turn caused by extra masses such as accelerometer and force transducers, that are utilized on the measurement of the system\'s Frequency Response Functions (FRF). The mass cancellation techniques studied here are developed through frequency domain input and output relationships as well as substructuring concepts. The analytical models employed in the mass cancellation problem are also applied in obtaining unknown FRF from a subset of measured FRF that are measured with extra masses attached to the structure. The methods studied are applied to numerically simulated data from discrete systems, as well as to experimental data coming from modal tests performed on simple structures. Reasonably good results are obtained in either the numerical and experimental analysis for the mass cancellation problem. In obtaining unknown FRF data, it was verified that the models generated reasonable results in some circumstances, and that experimental noise is a major source of error in using these mass cancellation techniques for the purpose of obtaining unmeasured data from a subset of measured FRF.
25

Vibrace při obrábění kovů – příčiny a jejich eliminace / Vibration at machining of metals - reasons and remedies

Sismilich, Vladimír January 2010 (has links)
This diploma thesis is concerning about summarizing and describing types of vibrations, their causes and influences to the machining. The stable conditions of machining were pointed out. The experiment was conducted in which the frequency response function of specific milling machine was measured. Than the stability lobe diagram was constructed.
26

Dynamic analyses of hollow core slabs : Experimental and numerical analyses of an existing floor / Dynamiska analyser av håldäcksbjälklag : Experimentell och numerisk analys av ett befintligt golv

Hansell, Markus, Tamtakos, Panagiotis January 2020 (has links)
For intermediate floors in residential and office buildings, as well as in parking garages and malls, there is a wide use of hollow core concrete slabs in Sweden today. Hollow core slabs are precast and prestressed concrete elements with cylindrical-shaped voids extending along the length of the slab. These structural elements have the advantage compared to cast-in-situ concrete slabs that they have a high strength, due to the prestressing, and that the voids allow for a lower self-weight. Additionally, the voids allow for a reduction in the use of concrete material. These characteristics offer possibilities to build long-span floors with slender designs. However, a consequence of the slenderness of the slabs is that such floors have an increased sensitivity to vibrations induced by various dynamic loads. In residential and office buildings vibrations are primarily caused by human activity, and therefore concerns related to the serviceability of such floors are raised. These vibrations are often not related to problems with structural integrity, but rather to different aspects of comfort of the residents or workers. The aim of this thesis is to provide additional information regarding the dynamic behavior of hollow core floors. An experimental modal analysis has been performed on an existing floor in an office building. The dynamic properties in the form of natural frequencies, mode shapes, damping ratios and frequency response functions were derived and analyzed from these measurements. Subsequently, several finite element models were developed, aiming to reproduce the experimental dynamic behavior of the studied floor. The measurements initially showed some unexpected dynamic responses of the floor. For this reason, more advanced methods of signal analyses were applied to the data. The analyses showed that the slab has some closely spaced modes and that the modes of the floor are complex to a certain degree. The finite element models were studied with different configurations. In particular, the effect the model size, boundary conditions, material properties and potential structural discontinuities have on the dynamic response of the slab was studied. Sufficiently good agreement has been achieved between the experimental and numerical results in terms of natural frequencies and mode shapes. The acceleration amplitude responses of the numerical models were generally higher than the ones obtained from the measurements, which leads to difficulties in matching of the frequency response functions. / Håldäck i betong används idag i stor utsträckning som bjälklag i bostads- och kontorsbyggnader, liksom i parkeringsgarage och köpcentra. Håldäcksbjälklag består av prefabricerade och förspända betongelement, med cylindriska hål som sträcker sig i plattans längsriktning. Dessa konstruktionselement har fördelen, jämfört med platsgjutna betongplattor, att de har en hög hållfasthet på grund av förspänningen och att hålen möjliggör en lägre egenvikt. Dessutom gör hålen att en mindre mängd betongmaterial behövs. Dessa egenskaper ger möjligheter att bygga golv med långa spännvidder och slank design. En konsekvens av slankheten är emellertid att sådana golv har en ökad känslighet för vibrationer som orsakas av olika dynamiska belastningar. I bostads- och kontorsbyggnader orsakas vibrationer främst av mänsklig aktivitet, och därför finns det en del oro relaterad till sådana golvs brukbarhet. Dessa vibrationer är oftast inte relaterade till frågor om strukturell integritet, utan snarare till olika aspekter av boendes eller arbetares känsla av komfort. Syftet med detta examensarbete är att bidra till kunskapen om håldäcksbjälklags dynamiska beteende. En experimentell modalanalys har utförts på ett befintligt golv i en kontorsbyggnad. De dynamiska egenskaperna i form av egenfrekvenser, modformer, dämpning och frekvenssvarsfunktioner erhölls och analyserades med hjälp av dessa mätningar. Därefter utvecklades flera finita element modeller för att reproducera det experimentellt uppmätta dynamiska beteendet hos det studerade golvet. Mätningarna visade initialt något oväntade dynamiska responser från golvet. Av denna anledning applicerades mer avancerade signalanalysmetoder på datan. Analyserna visade att plattan har några moder inom ett litet frekvensintervall och att moderna till en viss grad är komplexa. De finita element modellerna studerades med olika konfigurationer. I synnerhet studerades effekten av modellstorleken, randvillkoren, materialegenskaperna och potentiella strukturella diskontinuiteter på golvets dynamiska respons. Tillräckligt bra överensstämmelse har uppnåtts mellan de experimentella och numeriska resultaten i form av egenfrekvenser och modformer. Accelerationsamplituderna för de numeriska modellerna var i allmänhet högre än de som erhölls under mätningarna, vilket leder till svårigheter att matcha frekvenssvarsfunktionerna.
27

Development and Validation of an Automated Directivity Acquisition System Used in the Acquisition, Processing, and Presentation of the Acoustic Far-Field Directivity of Musical Instruments in an Anechoic Space

Eyring, Nicholas J. 12 December 2013 (has links) (PDF)
A high spatial resolution acoustic directivity acquisition system (ADAS) has been developed to acquire anechoic measurements of the far field radiation of musical instruments that are either remote controlled or played by musicians. Building upon work performed by the BYU Acoustic Research Group in the characterization of loudspeaker directivity, one can rotate a musical instrument with sequential azimuthal angle increments under a fixed semicircular array of microphones while recording repeated notes or sequences of notes. This results in highly detailed and instructive directivity data presented in the form of high-resolution balloon plots. The directivity data and corresponding balloon plots may be shown to vary as functions of time or frequency. This thesis outlines the development of a prototype ADAS and its application to different sources including loudspeakers, a concert grand piano, trombone, flute, and violin. The development of a method of compensating for variations in the played amplitude at subsequent measurement positions using a near-field reference microphone and Frequency Response Functions (FRF) is presented along with the results of its experimental validation. This validation involves a loudspeaker, with known directivity, to simulate a live musician. It radiates both idealized signals and anechoic recordings of musical instruments with random variations in amplitude. The concept of coherence balloon maps and surface averaged coherence are introduced as tools to establish directivity confidence. The method of creating composite directivities for musical instruments is also introduced. A composite directivity comes from combining the directivities of all played partials to approximate what the equivalent directivity from a musical instrument would be if full spectral excitation could be used. The composite directivities are derived from an iterative averaging process that uses coherence as an inclusion criterion. Sample directivity results and discussions of experimental considerations of the piano, trombone, flute, and violin are presented. The research conducted is preliminary and will be further developed by future students to expand and refine the methods presented here.
28

Train Induced Vibration Analysis of an End-frame Bridge : Numerical Analysis on Sidensjövägen

Wiberg, Niklas, Halilovic, Jasmin January 2018 (has links)
Higher speeds and higher capacity will cause the Swedish rail network to be exposed to disturbing dynamic effects. Higher speeds cause higher vertical acceleration levels of the bridge deck. In this thesis, a numerical analysis of a three span end-frame bridge subjected to train induced vibrations is performed. The aim is to identify which structural components and boundary conditions that affect the dynamic behavior of the bridge. Furthermore, the influence of soil structure interaction (SSI) will be investigated as it may have contribution to the stiffness and damping of the structural system.  In order to capture the dynamic response of the bridge, an analysis in the frequency domain was preformed where frequency response functions (FRF) and acceleration envelopes were obtained. For this purpose, a detailed FE-model in 3D was created. Three different cases were studied, model subjected to ballast, model subjected to soil and model subjected to both ballast and soil in coherence. A high speed load model (HSLM) was used to create simulation of train passages at different speeds and applied to all cases so that the bridge deck accelerations could be studied. A simplified 2D-model with impedance functions representing the soil-structure interaction was created to validate the results from the detailed 3D-model and for practical design purposes.  The result of this numerical analysis showed that the vertical accelerations were within acceptable levels of the maximum allowed limits given in governing publications. Considering the surrounding soil, the results revealed an increase of the dynamic response in the midspan at resonant frequency. However, it was identified that this behavior is not explained by the influence of soil structure interaction but rather the change in boundary conditions of the end-shields. The same dynamic behavior was identified for the simplified 2D-model, with a slight underestimation of the vertical accelerations at resonance.
29

End-Shield Bridges for High-Speed Railway : Full scale dynamic testing and numerical simulations

Elgazzar, Hesham January 2017 (has links)
The increasing need for High-Speed Railway (HSR) to reduce the travelling time requires increasing research within this field. Bridges are main components of any railway network, including HSR networks, and the optimization of their design for this purpose would contribute to a faster and more cost effective development of the HSR network. The initial investment, the running and maintenance costs of the bridges can be decreased through better understanding of the their dynamic behaviour. This thesis studies the dynamic behaviour of end-shield railway bridges under HSR operation. 2D beam analysis is used to study the effect of the distribution of the train’s axle load. Relatively accurate 3D FE-models are developed to study the effect of Soil-Structure Interaction (SSI) and the dynamic response of the bridges. Modelling alternatives are studied to develop an accurate model. A full scale test of a simply supported Bridge with end-shields using load-controlled forced excitation was performed and the results were used to verify the theoretical models. A manual model updating process of the material properties of the 3D FE-model is performed using FRFs from the field measurements. A Simple 2D model is also developed, where a spring/dashpot system is implemented to simplify SSI, and updated to reproduce the field measured responses. The conclusions of the project emphasize the importance of SSI effects in the dynamic analysis of end-shield bridges for predicting their dynamic behaviour. The conclusions also show that the modelling of the surrounding soil and the assumption of the soil material parameters have significant effect on the dynamic response. Even the boundary conditions, bedrock level and the ballast on the railway track affects the response. The results also show that the bridge’s concrete section behaves as uncracked section under the studied dynamic loading. / <p>QC 20170403</p>
30

Soil-structure interaction for traffic induced vibrations in buildings

Hofstetter, Marcel, Pashai, Nima January 2018 (has links)
Major cities in Sweden experience a population growth, demanding innovative solutions regarding land exploitation for residential housing. One solution is to build closer to existing railway tracks, however difficulties arise regarding determining traffic induced vibrations from trains. This sometimes results in vibrations being too large in buildings regarding comfort, resulting in expensive measures taken as to reduce the vibrations. The scope of this thesis is to investigate the soil-structure interaction caused by traffic induced vibrations in buildings using ABAQUS FE software, where the aim is to partly investigate how a structure effects surrounding soil, partly to investigate which parameters of a structure has largest favorable impact on foundation vibrations. Major results include that ground vibrations at 2-4 meters parallel to a structure relative to the vibration source remain constant, independent on whether a house is present or not. Further results show that increasing the thickness of the foundation slab has a mitigating effect on the induced vibrations. The main conclusions of this thesis include that quadratic elements are superior to linear elements for dynamic analyses for soil, and that accelerometers should be placed at least 2-4 m next to an existing structure to obtain accurate measurements comparable to if no structure was present. / Större städer i Sverige upplever en befolkningstillväxt, vilket resulterar i att kreativa lösningar måste introduceras gällande markexploatering för bostadshus. En sådan lösning är att bygga närmre befintlig järnväg, dock resulterar detta i svårigheter gällande att kvantifiera magnituden av trafikinducerade vibrationer i byggnadsfundament orsakade av tågtrafik. En konsekvens av detta är att vibrationsnivåerna i husen ibland blir för stora sett till komfortvibrationer, vilket resulterar i att dyra åtgärder måste tas för att minska vibrationerna. Denna avhandling syftar till att genom att använda ABAQUS FE-mjukvara utforska jord-strukturinverkan i hus orsakade av trafikvibrationer. Målet är delvis att undersöka hur byggnation påverkar omgivande markvibrationer, delvis att undersöka vilka parametrar som har störst gynnsam effekt gällande dämpning av trafikinducerade vibrationer. De viktigaste resultaten indikerar att markvibrationer 2-4 meter bredvid ett hus relativt vibrationskällan förblir oförändrade oberoende av om byggnation existerar eller ej, samt att en ökning av tjockleken av grundplattan resulterar i minskade fundamentvibrationer. Slutsatserna som presenteras är flera, däribland att kvadratiska element är mer beräkningseffektiva än linjära element för dynamiska analyser för jord, samt att accelerometrar bör placeras minst 2-4 m bredvid ett befintligt hus för att erhålla mätdata jämförbara med om ett hus inte skulle finnas på platsen.

Page generated in 0.1226 seconds