• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of side friction impacts on urban roads : Case study Dar-es-Salaam

Chiguma, Masatu L. M. January 2007 (has links)
Side friction factors are defined as all those actions related to the activities taking place by the sides of the road and sometimes within the road, which interfere with the traffic flow on the travelled way. They include but not limited to pedestrians, bicycles, non-motorised vehicles, parked and stopping vehicles. These factors are normally very frequent in densely populated areas in developing countries, while they are random and sparse in developed countries making it of less interest for research and consequently there is comparatively little literature about them. The objective of this thesis is to analyze the effect of these factors on traffic performance measures on urban roads. To carry out this work, a research design was formulated including specific methods and prescribed limitations. An empirical case study methodology was adopted where Dar-es-salaam city in Tanzania was chosen as a representative case. The scope was limited to include only road-link facilities. A sample of these facilities including two-lane two-way and four-lane two-way roads were selected and studied. The study was conducted in two parts, of which each involved a distinctive approach. Part one involved a macroscopic approach where traffic and friction data were collected and analyzed at an aggregated level, whereas part two involved a microscopic approach where data of individual frictional elements were collected and analysed individually. Data collection was mainly performed by application of video method, which proved to be effective for simultaneous collection of traffic and side friction data. Data reduction was conducted chiefly by computer, using standard spreadsheet and statistical software packages, mainly SPSS and some computer macros. The analysis part was based on statistical methods, chiefly regression analysis. In the macroscopic approach, traffic and friction data from all sites were adjusted through a process called ‘normalization’, which enabled the data from the different sites to be merged, and consequently to obtain speed-flow curves for each road type. The individual friction factors through regression analysis were weighted and combined into one unit of measure of friction called "FRIC". The effect of "FRIC" on speed-flow curves was analyzed. The results showed significant impact on speed for both road types. Impact on capacity was identified on two-lane two-way roads while field data on four-lane two-way roads did not allow this. In the microanalysis approach, effect of individual side friction factors on speed was analyzed. The results showed that on two-lane two-way roads, all studied factors exhibited statistically significant impact on speed, while on four-lane two-way roads, only one factor showed the same. The results also identified impact values characteristic to the individual friction factors on some roads. Recommendations were made based on these results that highway capacity studies particularly in developing countries, should include the friction variable, though in the form suitable to their own particular circumstances. Further recommendations were made that these results should be applied to formulate management programs seeking to limit levels of side friction on high mobility urban arterial streets in order to improve traffic safety and operation efficiency. / <p>QC 20100701</p>
2

Friction factors and nusselt numbers for laminar flow in ducts / Daniel Petrus Rocco Venter

Venter, Daniel Petrus Rocco January 2009 (has links)
By using the finite element method to solve the appropriate momentum and energy equations the friction factors and Nusselt numbers for fully developed laminar flow were determined for one- and two-dimensional flow systems. The Nusselt numbers were determined for domain boundaries subjected to a constant heat flux (H1) or a constant surface temperature (T) around the computational boundaries and in the axial directions. C++ programs, that were rewritten and extended from previous programs, were used to solve the laminar flow and to determine the values. The required wall shear stresses and heat fluxes were directly obtained for a duct as part of the primary finite-element solution; these values were then used to determine the Nusselt number and friction factor for the specific duct. The computations were performed for circular-, annular-, trapezoidal-, rectangular- and triangular ducts. Special emphasis was placed on trapezoidal ducts since only a limited number of studies have been performed on trapezoidal duct shapes and none of these studies employed the finite element method. Excellent agreement was found when the determined values were compared with the values reported in the literature. In general, the agreement of the values improved as the number of elements was increased. It was, therefore, concluded that the methods used in this study yielded friction factors and Nusselt numbers that are very accurate and usable. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2009.
3

Friction factors and nusselt numbers for laminar flow in ducts / Daniel Petrus Rocco Venter

Venter, Daniel Petrus Rocco January 2009 (has links)
By using the finite element method to solve the appropriate momentum and energy equations the friction factors and Nusselt numbers for fully developed laminar flow were determined for one- and two-dimensional flow systems. The Nusselt numbers were determined for domain boundaries subjected to a constant heat flux (H1) or a constant surface temperature (T) around the computational boundaries and in the axial directions. C++ programs, that were rewritten and extended from previous programs, were used to solve the laminar flow and to determine the values. The required wall shear stresses and heat fluxes were directly obtained for a duct as part of the primary finite-element solution; these values were then used to determine the Nusselt number and friction factor for the specific duct. The computations were performed for circular-, annular-, trapezoidal-, rectangular- and triangular ducts. Special emphasis was placed on trapezoidal ducts since only a limited number of studies have been performed on trapezoidal duct shapes and none of these studies employed the finite element method. Excellent agreement was found when the determined values were compared with the values reported in the literature. In general, the agreement of the values improved as the number of elements was increased. It was, therefore, concluded that the methods used in this study yielded friction factors and Nusselt numbers that are very accurate and usable. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2009.
4

Technology for the Advancement of Die Casting Tooling

Corey Mitchell Vian (11160009) 21 July 2021 (has links)
<p>High pressure die casting is an industrial metal casting process used to manufacture goods for use in many aspects of society. Within this manufacturing process, the tooling is subjected to chemical attack from molten aluminum while also being responsible for heat removal during solidification. The purpose of this study is to develop and test materials that allow the tools to better withstand the chemical attack, and to develop design rules to guide the use of additive manufacturing for improving the heat exchange function of by way of conformal cooling.</p> <p> </p> <p>Within the material studies, a gooseneck with a niobium lining was developed to allow the successful implementation of hot chamber aluminum die casting. In addition, a manufacturing plan is described that will allow the niobium gooseneck design to be easily sourced by die casting companies. The material studies also included dunk testing of several coatings, including a plasma assisted chemical vapor deposition silicon doped diamond like carbon (PACVD Si-DLC). The Si-DLC coating performed the best in the dunk testing as compared to bare and nitrocarburized tool steel, and a number of other coating architectures.</p> <p> </p> Within the study of additively manufactured conformal cooling design, a finite difference model is developed that allows a simulated experiment that produced a number of useful equations that guide the design of die casting tooling. During the development of the models, it was discovered that little is known regarding the friction factors of additively manufactured steel pipes, so a factorial experiment was employed to empirically determine said friction factors. Charts allowing design engineers to quickly determine pressure drops and heat transfer coefficients of conformal cooling designs was produced as well.<br>

Page generated in 0.0888 seconds