Spelling suggestions: "subject:"frictionstir welding"" "subject:"frictionestimation welding""
131 |
Caracterização de junta soldada por atrito linear com mistura (FSW) da liga Al-Mg-Si AA 6063. / Friction stir welded joint characterization of 6063 aluminum alloy.Paiva, Flávio Gil Alves 06 November 2009 (has links)
O processo de soldagem por atrito linear com mistura (SALM), ou Friction Stir Welding, surgiu do desejo de se aplicar os princípios e vantagens da soldagem em estado sólido do processo por atrito tradicional em outras geometrias que não fossem axi-simétricas. Assim, foi acrescentada uma velocidade de translação e uma ferramenta rotativa especial, sendo possível realizar cordões de solda em ligas antes com soldabilidade bem ruim. O fator chave para se ter uma solda por atrito linear com mistura sã é a combinação correta entre o a geometria da ferramenta, os parâmetros de soldagem e o fluxo de material durante a soldagem. O lado do avanço, em relação à velocidade de translação da ferramenta, está sob tração, enquanto que o lado do retrocesso está sob compressão. Cada um destes lados possui características diferenciadas, tanto microestruturais como de propriedades mecânicas. O objetivo deste trabalho é caracterizar o cordão de solda feito em liga AA6063T6 com 3 mm de espessura. O material foi soldado com uma ferramenta tipo Three flats, com rotação de 1120 rpm e velocidade de soldagem de 5,3 mm/s. Os corpos de prova foram caracterizados por microscopia óptica, microdureza e ensaio de tração. Os resultados mostraram que o cordão de solda é assimétrico, sendo 20% maior do lado do avanço da ferramenta. Além disto, houve um refino de grão e, na transição entre a zona termomecanicamente afetada (ZTMA) e a zona afetada pelo calor (ZAC), os grãos alongados apresentaram fator de forma maior no lado do avanço (entre 1,73 e 2,74) do que no lado do retrocesso (entre 1,40 e 1,59). As extensões da zona termomecanicamente afetada e da zona afetada pelo calor são maiores do lado do avanço que do lado do retrocesso. / Friction Stir Welding process arose from a desire to apply the principles and benefits of traditional solid state friction welding friction in non axi-symmetric geometries. Thus, it was added a traveling speed and a special rotating tool that allows welding aluminum alloys with bad weldability. The key factor to have a linear friction welding with sound bead is a combination of tool geometry, welding parameters and material flow during welding, which is under tension stress in the advancing side and in compression in the retrieving side. Thus, each side has different microstructures and mechanical properties. The objective of this work is to characterize the 3,0 mm weld bead of an alloy 6063 T6. This material was welded with a tool type \"Three flats\" with a rotation speed of 1120 rpm and welding traveling speed of 5.3 mm/s. The samples were characterized by optical microscopy, microhardness testing and tensile test. The results showed that the weld bead is asymmetric, with an area 20% higher in the advancing side. Moreover, a grain refining process occurred in the weld bead and, in the transition region between thermomechanically affected zone (TMAZ) and heat affected zone (HAZ) the elongated grains presented a shape factor higher in the advancing side (1,73 to 2,74) than in the retrieving side (1,40 to 1,59). Also, the thermomechanically affected zone and the heat affected zone presented a larger width in the advancing side than in the retrieving side.
|
132 |
Investigação da resistência à corrosão por pites do aço inoxidável duplex tipo 2404 (UNS S82441) submetido à soldagem por atrito com pino não-consumível (FSW) / Investigation of pitting corrosion resistance of duplex stainless steel LDX 2404 (UNS S82441) subjected to Friction Stir Welding (FSW)Antonio Marcos dos Santos Leite 23 June 2017 (has links)
Os aços inoxidáveis duplex são largamente utilizados na fabricação de equipamentos para a indústria de óleo e gás, utilizados tanto no ambiente onshore quanto offshore. Sua grande limitação é que, com o aumento de temperatura, ocorre precipitação de fases indesejáveis, que reduzem drasticamente a resistência à corrosão e as propriedades mecânicas desses materiais. Considerando o efeito deletério da soldagem a fusão nos aços inoxidáveis duplex, a soldagem por atrito com pino não-consumível (FSW) é amplamente considerada como alternativa aos processos convencionais. Como no FSW a união dos materiais ocorre no estado sólido, muitos dos problemas de soldabilidade associados às técnicas tradicionais de soldagem por fusão são evitados. Neste trabalho, amostras retiradas da zona misturada (ZM), das zonas afetadas pelo calor (ZTA e ZTMA) e do metal de base (MB) de chapas de aço inoxidável lean duplex LDX 2404® (UNS S82441) soldadas por atrito com pino não-consumível foram caracterizadas microestruturalmente e tiveram sua resistência à corrosão avaliada por meio de ensaios eletroquímicos. Os resultados obtidos nos ensaios eletroquímicos indicaram que as zonas afetadas pelo calor e a ZM se mantiveram tão resistentes à corrosão localizada quanto o MB. Permitiram concluir também que a excelente resistência à corrosão da liga está associada ao teor elevado de N. / Duplex stainless steels have been widely used in the manufacture of equipments and piping for oil & gas industry, in onshore and offshore service. However, whenever they are exposed to high temperatures the precipitation of deleterious phases might occur. The precipitates drastically reduce the corrosion resistance and mechanical properties of these materials. The friction stir welding (FSW) process has been considered as an alternative to replace the conventional fusion welding processes in duplex stainless steels. FSW is a solid-state welding process avoiding many of the problems associated to conventional fusion techniques. In this study, specimens of the various zones affected and nearby the FSW, specifically the nugget or stir zone (SZ), the heat affected zones (HAZ/TMAZ) and the base metal (BM) of welded lean duplex UNS S82441 were characterized microstructurally and had their corrosion resistance evaluated by electrochemical tests. The results indicated that the HAZ/TMAZ and SZ regions presented similar localized corrosion resistance to that of the BM showing that it is a potential technique for replacing the conventional processes with advantageous corrosion resistance properties. They also concluded that the excellent corrosion resistance of the alloy is associated with the high N content.
|
133 |
Temperature Control in Friction Stir Welding Using Model Predictive ControlTaysom, Brandon Scott 01 June 2015 (has links)
Temperature is a very important process parameter in Friction Stir Welding (FSW), but until lately active control of temperature has not been practiced. Recently, temperature control via a PID controller has proven to be effective. Model Predictive Control (MPC) is a control method that holds promise, but has not been attempted in FSW before. Two different model forms are developed for MPC and are evaluated. The first is a simple first-order plus dead time (FOPDT) model. The second is the Hybrid Heat Source model and is more complex; it combines the heat source method and a 1D discretized thermal model of the FSW tool. Model parameters were determined by fitting model predictions to actual weld data. The models were evaluated for their performance in modeled and unmodeled disturbances once the process was already at a quasi steady state condition and also were evaluated for control immediately after plunge. The FOPDT based MPC controller has very good performance and was comparable in performance to previously proven and well-tuned PID controllers. For small modeled disturbances the FOPDT controller settled within 1°C of the setpoint in 10s with almost no oscillations and only 2°C of overshoot. For large unmodeled disturbances, the FOPDT controller settled within 1°C of the setpoint in 30s with no oscillations and 16°C of overshoot. For the same disturbances, the PID servo controller settled in 30s with no oscillations and 9°C of overshoot, and the PID regulator controller settled in 15s but had almost a full oscillation and 13°C of overshoot.The Hybrid Heat Source MPC controller and the PID regulator controller were also able to control temperature within 5°C of the setpoint immediately after the plunge during the highly transient portion of the weld, which previously had been assumed to be too difficult to control. The PID regulator controller had a high degree of variability between the two runs (a settling time of 10s and 30s, and .5 and 4.5 oscillations before settling), but settled quickly and once settled was able to hold the temperature within 2°C of the setpoint. The HHS MPC controller on the other hand had far fewer oscillations (0 and 1 oscillation) before settling, but could only hold the temperature within 5°C of the setpoint. Both of these controllers performed far better than the FOPDT MPC and PID servo controllers.
|
134 |
Understanding the material flow path of the friction stir weld processSanders, Johnny Ray, January 2005 (has links)
Thesis (M.S.) -- Mississippi State University. Department of Mechanical Engineering. / Title from title screen. Includes bibliographical references.
|
135 |
Investigation and modelling of friction stir welded copper canistersKällgren, Therese January 2010 (has links)
This work has been focused on characterisation of FSW joints, and modelling of the process, both analytically and numerically. The Swedish model for final deposit of nuclear fuel waste is based on copper canisters as a corrosion barrier with an inner pressure holding insert of cast iron. Friction Stir Welding (FSW) is the method to seal the copper canister, a technique invented by The Welding Institute (TWI). The first simulations were based on Rosenthal’s analytical medium plate model. The model is simple to use, but has limitations. Finite element models (FEM) were developed, initially with a two-dimensional geometry. Due to the requirements of describing both the heat flow and the tool movement, three-dimensional models were developed. These models take into account heat transfer, material flow, and continuum mechanics. The geometries of the models are based on the simulation experiments carried out at TWI and at Swedish Nuclear Fuel Waste and Management Co (SKB). Temperature distribution, material flow and their effects on the thermal expansion were predicted for a full-scale canister and lid. The steady state solutions have been compared with temperature measurements, showing good agreement. In order to understand the material flow during welding a marker technique is used, which involves inserting dissimilar material into the weld zone before joining. Different materials are tested showing that brass rods are the most suitable material in these welds. After welding, the weld line is sliced, etched and examined by optical microscope. To understand the material flow further, and in the future predict the flow, a FEM is developed. This model and the etched samples are compared showing similar features. Furthermore, by using this model the area that is recrystallised can be predicted. The predicted area and the grain size and hardness profile agree well. Microstructure and hardness profiles have been investigated by optical microscopy, Scanning Electron Microscopy (SEM), Electron Back Scatter Diffraction (EBSD) and Rockwell hardness measurements. EBSD visualisation has been used to determine the grain size distribution and the appearance of twins and misorientation within grains. The orientation maps show a fine uniform equiaxed grain structure. The root of the weld exhibits the smallest grains and many annealing twins. The appearance of the nugget and the grain size depends on the position of the weld. A large difference can be seen both in hardness and grain size between the start of the weld and when the steady state is reached. / QC20100719
|
136 |
Fatigue Strength of Friction Stir Welded Joints in AluminiumEricsson, Mats January 2005 (has links)
Solid state Friction stir welding (FSW) is of major interest in the welding of aluminium since it improves the joint properties. Many applications where Al-alloys are used are subject to varying load conditions, making fatigue failure a critical issue. In the scope of this thesis, the fatigue performance of friction stir welded AlMgSi-alloy 6082 has been investigated. Static and dynamic properties of different joint configurations and welds produced with varying process parameters have been determined. Microstructures of fractured surfaces have been studied to evaluate the effect of weld discontinuities on fatigue. The mechanical strength of the friction stir welds was set in relation to that of conventional fusion welds, and that of other FS welded Al-alloys. The friction stir process produced aluminium butt welds with high and consistent fatigue strengths, which exceeded the strengths of similar fusion welded samples. A smooth weld geometry showed to be of great importance for the fatigue performance, favouring the friction stir welds. Welding speed in a tested range of 0.35-1.4 m/min had only a modest influence on the properties of the friction stir welds; properties were not deteriorating at the highest speed. The softening of the alloy around the weldline was modelled. A fair description of the hardness profiles across the weld was obtained. At a low and high welding speed a full and partial softening respectively was predicted, indicating that full softening is not required to obtain a flawless weld. In case of friction stir overlap welds, tool design is even more important than in butt welding to secure weld quality. A broad tool shoulder with a concave pin end gave the best performance. In particular, the minimal influence on the sheet interface when welding with such a tool was beneficial for the fatigue strength. The stress distribution in overlap and T-type test specimens has been modelled. The stress intensity factors were determined. The corresponding crack propagation rates were in fair accordance with the experimental results. It was found that a simplified approach, developed to estimate ∆K for overlap spot welds, could be used also for friction stir overlap joints. / QC 20101008
|
137 |
Modeling and Control of Friction Stir Welding in 5 cm thick Copper Canisters / Modellering och Reglering av Friction Stir Welding i 5 cm tjocka KopparkapslarNielsen, Isak January 2012 (has links)
Friction stir welding has become a popular forging technique used in many applications. The Swedish Nuclear Fuel and Waste Management Company (SKB) evaluates this method to seal the 5 cm thick copper canisters that will contain the spent nuclear fuel. To produce repetitive, high quality welds, the process must be controlled, and today a cascade controller is used to keep the desired stir zone temperature. In this thesis, the control system is extended to also include a plunge depth controller. Two different approaches are evaluated; the first attempt is a decentralized solution where the cascaded temperature controller is kept, and the second approach uses a non-linear model predictive controller for both depth and temperature. Suitable models have been derived and used to design the controllers; a simpler model for the decentralized control and a more extensive, full model used in the non-linear model predictive controller that relates all the important process variables. The two controller designs are compared according to important performance measures, and the achieved increase in performance with the more complex non-linear model predictive controller is evaluated. The non-linear model predictive controller has not been implemented on the real process. Hence, simulations of the closed loop systems using the full model have been used to compare and evaluate the control strategies. The decentralized controller has been implemented on the real system. Two welds have been made using plunge depth control with excellent experimental results, confirming that the decentralized controller design proposed in this thesis can be successfully used. Even though the controller manages to regulate the plunge depth with satisfying performance, simulations indicate that the non-linear model predictive controller achieves even better closed loop performance. This controller manages to compensate for the cross-connections between the process variables, and the resulting closed loop system is almost decoupled. Further research will reveal which control design that will finally be used. / ''Friction stir welding'' har blivit en populär svetsmetod inom många olika tillämpningar. På Svensk Kärnbränslehantering AB (SKB) undersöks möjligheten att använda metoden för att försegla de 5 cm tjocka kopparkapslarna som kommer innehålla det använda kärnbränslet. För att kunna producera repeterbara svetsar utav hög kvalité krävs det att processen regleras. Idag löses detta med en temperaturregulator som reglerar svetszonens temperatur. I detta examensarbete utökas styrsystemet med en regulator för svetsdjupet. Två olika lösningar har utvärderats; först en decentraliserad lösning där temperatur-regulatorn behålls och sedan en lösning med en olinjär modellprediktiv reglering (MPC) som reglerar både djup och temperatur. Passande modeller har tagits fram och har använts för att designa regulatorerna; en enklare modell för den decentraliserade regulatorn och en utökad, komplett modell som används i den olinjära MPC:n och som beskriver alla viktiga variabler i processen. Viktiga prestandamått har jämförts för de båda regulatorstrukturerna och även prestandaökningen med den olinjära MPC:n har utvärderats. Då denna regulator inte har implementerats på den verkliga processen har simuleringar av den kompletta modellen använts för att jämföra och utvärdera regulatorstrukturerna. Den decentraliserade regulatorn har implementerats och testats på processen. Två svetsar har gjorts och de har givit utmärkta resultat, vilket visar att regulatorstrukturen som presenteras i rapporten fungerar bra för reglering av svetsdjupet. Trots att den implementerade regulatorn klarar av att reglera svetsdjupet med godkänt resultat, så visar simuleringar att den olinjära MPC:n ger ännu bättre reglerprestanda. Denna regulator kompenserar för korskopplingar i systemet och resulterar i ett slutet system som är nästan helt frikopplat. Ytterligare forskning kommer avgöra vilken av strategierna som kommer att användas i slutprodukten.
|
138 |
Studies On Friction Stir Welding Of Precipitation Hardenable Aluminium AlloysKumar, K 01 1900 (has links)
Friction Stir Welding (FSW) is an emerging solid state welding process. It has been a proven method for welding high strength aluminium alloys which were previously not recommended for conventional fusion welding. Since the invention of the process by The Welding Institute, United Kingdom, in 1991, a number of studies have been conducted on the material flow, microstructural evolution and mechanical properties of friction stir welds. However, there is not enough conceptual background available on FSW process for physical understanding of the mechanism of weld formation. In addition to that, FSW welds of high strength precipitation hardenable aluminium alloys suffer from reduced joint efficiency due to overaging in the heat affected zone. In the present investigation, experimental analysis has been carried out to understand the mechanism of weld formation and parameter optimization for aluminium alloys 7020-T6 and 6061-T6. For this purpose the investigations have been made on both the process aspects and the material aspects.
The process aspects are analyzed with the objective of learning the mechanism to produce defect free welds. For this purpose experiments have been carried out to analyze the effect of FSW parameters, material flow and the frictional characteristics between the tool and base metal. Preliminary experiments are conducted on aluminium alloy 7020-T6 with different tool geometries to analyze the interaction of the tool with the base metal using a knee-type vertical milling machine. Then, the tool geometry which produced defect-free weld is used for further experimentation. The role of tool pin, shoulder and axial load on the formation of defect free weld is analyzed in an innovative experiment, where the tool and base metal interaction is continuously increased by continuously increasing the interference between the tool and base metal. In another experiment the initial abutting interface position with respect to the tool is continuously varied to study the interaction of the tool with the initial interface and to find the positional information where the initial interface is completely eliminated. Further, the tool metal interface condition is studied using a specially designed tribological experiment which simulates the FSW condition.
From the base metal point of view, due to the strain, strain rate and temperature imposed on the base metal during the process, the microstructure is altered. In precipitation hardenable aluminium alloys the strengthening precipitates are dissolved or overaged in the weld region depending on the peak temperature in the region, which reduces the joint efficiency. However, the dissolution and overaging are kinetic process. In order to analyze this time dependant softening behavior of the base metal 7020-T6 and 6061-T6, isothermal annealing and differential scanning calorimetric studies are performed.
In order to obtain FSW welds with maximum joint efficiency, the welding temperature should not exceed the “softening temperature” of the base metal. But, to produce defect free welds favorable material flow in the weld nugget is necessary. The material flow and consolidation depend on the process temperature. Hence, for a given tool to produce defect free weld there is a need for minimum temperature. If the weld formation temperature is less than the base metal softening temperature, the weld can be made with 100% joint efficiency. In order to optimize the FSW parameter which gives defect free weld with lowest possible temperature, an instrumented programmable FSW machine is designed and developed. The machine is designed in such a way that welding parameters – rotation speed, traverse speed and plunging depth – can be continuously varied from the start to end of the weld between given two values. This reduces the number of experimental trials, material and time.
Based on the experimental results the following conclusions are derived.
1.The minimum diameter of the pin required for FSW depends on the base metal and tool material property for a given set of parameters. If the pin diameter is insufficient for a given set of welding parameters, it fails during plunging operation itself.
2.There is a minimum diameter of the shoulder for a given diameter of the pin which produces defect free weld. The ratio of pin to shoulder to produce a defect free weld is not a constant value. It changes with tool geometry and process parameters.
3.Increasing the area of contact between the tool and shoulder for a given set of parameters increases the heat input and results in increased weld nugget grain size.
4.Initial abutting interface of the base metal is eliminated at the leading edge of the tool. However, new surfaces are generated due to interaction with the tool and the newer surfaces are consolidated at the trailing edge of the tool. Importantly, the weld strength is controlled by the defects generated due the improper elimination of newly generated surfaces.
5.Optimal axial load is required to generate the required pressure to consolidate the transferred material at the trailing edge of the tool and should be equal to the flow stress of the material at the processing temperature. The optimal axial load is 8.1kN for a tool having 20mm diameter shoulder with 6mm diameter frustum shaped pin.
6.Only the material that approaches the tool at the leading edge on the advancing side is stirred and the remaining material is simply extruded around the tool. Further, the initial abutting interface is completely removed only when it is located in the stirring zone, otherwise the initial abutting interface is not eliminated. In the present study the interface is completely stirred when it is located on the advancing side of the tool between 0.5mm away from the centerline and edge of the tool.
7.The temperature and pressure at the tool–base metal interface is above the temperature and pressure required for seizure to occur for given tool material (H13) and base metal (7020-T6). Hence, it is clear that during FSW the base metal transfers on to the tool and interaction occurs between transferred layer on tool and base metal. The coefficient of friction between the given tool material and base metal in FSW condition is in the range of 1.2 – 1.4.
8.The minimum temperature requirement for FSW of 7020-T6 is 400oC and 6061-T6 is 430oC. However, 7020-T6 and 6061-T6 softens at lower temperatures than that of the minimum FSW temperature. 7020-T6 softens 30% in 7min at 250oC, 4min at 300oC, 2min at 350oC and 1min at 400oC. After softening 30%, there is 10% recovery in hardness and the hardness remains constant thereafter. Whereas 6061-T6 softens gradually up to 47% in 7min at 350oC and 400oC, below the temperature of 250oC for 7020-T6 and 350oC for 6061-T6 there is no softening observed in 7min.
9.The maximum joint efficiency of the 7020-T6 weld is 82% and 6061-T6 weld is 60%.
10. The reduction in joint efficiency is attributed to overaging of the material in the heat affected zone.
|
139 |
Friction stir welding of copper canisters for nuclear wasteKällgren, Therese January 2005 (has links)
<p>The Swedish model for final disposal of nuclear fuel waste is based on copper canisters as a corrosion barrier with an inner pressure holding insert of cast iron. One of the methods to seal the copper canister is to use the Friction Stir Welding (FSW), a method invented by The Welding Institute (TWI).</p><p>This work has been focused on characterisation of the FSW joints, and modelling of the process, both analytically and numerically. The first simulations were based on Rosenthal’s analytical medium plate model. The model is simple to use, but has limitations. Finite element models were developed, initially with a two-dimensional geometry. Due to the requirements of describing both the heat flow and the tool movement, three-dimensional models were developed. These models take into account heat transfer, material flow, and continuum mechanics. The geometries of the models are based on the simulation experiments carried out at TWI and at Swedish Nuclear Fuel Waste and Management Co (SKB). Temperature distribution, material flow and their effects on the thermal expansion were predicted for a full-scale canister and lid. The steady state solutions have been compared with temperature measurements, showing good agreement.</p><p>Microstructure and hardness profiles have been investigated by optical microscope, Scanning Electron Microscope (SEM), Electron Back Scatter Diffraction (EBSD) and Rockwell hardness measurements. EBSD visualisation has been used to determine the grain size distribution and the appearance of twins and misorientation within grains. The orientation maps show a fine uniform equiaxed grain structure. The root of the weld exhibits the smallest grains and many annealing twins. This may be due to deformation after recrystallisation. The appearance of the nugget and the grain size depends on the position of the weld. A large difference can be seen both in hardness and grain size between the start of the weld and when the steady state is reached.</p>
|
140 |
Avaliação da corrosão da junta dissimilar sobreposta das ligas AA7050-T76511 e AA2024-T3 soldadas por fricção linear com misturaBertoncello, João Carlos Brancher January 2014 (has links)
As ligas de alumínio AA2024 e AA7050 tradicionalmente são utilizadas na fabricação de estruturas da fuselagem e da asa de aeronaves. Normalmente, a união dos componentes dessas estruturas é realizada por rebites, já que processos de soldagem com fusão produziriam defeitos indesejáveis. O processo de soldagem por fricção linear com mistura ou Friction Stir Welding (FSW) é uma alternativa à união de chapas de ligas de alumínio por rebites haja vista que não há fusão do material durante a união. No presente trabalho estudou-se o comportamento eletroquímico e a caracterização microestrutural de uma junta sobreposta, composta por um perfil extrudado da liga AA7050-T76511 e uma chapa da liga AA2024-T3, ambos previamente anodizados, soldada por fricção linear com mistura. O comportamento eletroquímico foi avaliado através da utilização da Técnica de Varredura com Eletrodo Vibratório (SVET), medidas do potencial de corrosão e curvas de voltametria cíclica em solução de 0,1 M de NaCl. Correntes anódicas mais intensas foram medidas na região da solda e ainda verificou-se que esta possui menores potenciais de pite e corrosão do que ambas as ligas. Também foi constatada a presença de corrosão intercristalina em ambas as ligas e na região da solda, porém com maior severidade na liga AA2024-T3. / AA2024 and AA7050 aluminum alloys are traditionally used in the manufacture of fuselage structures and aircrafts wings. Usually, the component union of these structures is made using rivets since weld process with melting will produce unwanted defects. The Friction Stir Welding (FSW) process is an alternative way to replace the traditional rivet union of aluminum alloys in the aeronautical and aerospace industries since the material does not melt during the joint. In the present work it has been studied the electrochemical behavior and microstructural characterization of a lap joint composed of an extruded profile of AA7050-T76511 alloy and a sheet of AA2024-T3 alloy, both of them previously anodized and jointed by friction stir welding. The electrochemical behavior was evaluated by means of Scanning Vibrating Electrode Technique (SVET), measurements of the corrosion potential and cyclic voltammetry in 0,1 M NaCl. Higher anodic currents were found in the weld region, moreover this region has the lowest pit and corrosion potential. Intercrystalline corrosion was found in both alloys and in the weld region, with the highest intensity in the AA2024-T3 alloy.
|
Page generated in 0.1172 seconds