• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 1
  • Tagged with
  • 13
  • 13
  • 9
  • 9
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Extension de la méthode LS-STAG de type frontière immergée/cut-cell aux géométries 3D extrudées : applications aux écoulements newtoniens et non newtoniens / Extension of the LS-STAG immersed boundary/cut-cell method to 3D extruded geometries : Application to Newtonian and non-Newtonian flows

Nikfarjam, Farhad 23 March 2018 (has links)
La méthode LS-STAG est une méthode de type frontière immergée/cut-cell pour le calcul d’écoulements visqueux incompressibles qui est basée sur la méthode MAC pour grilles cartésiennes décalées, où la frontière irrégulière est nettement représentée par sa fonction level-set, résultant en un gain significatif en ressources informatiques par rapport aux codes MFN commerciaux utilisant des maillages qui épousent la géométrie. La version 2D est maintenant bien établie et ce manuscrit présente son extension aux géométries 3D avec une symétrie translationnelle dans la direction z (configurations extrudées 3D). Cette étape intermédiaire sera considérée comme la clé de voûte du solveur 3D complet, puisque les problèmes de discrétisation et d’implémentation sur les machines à mémoire distribuée sont abordés à ce stade de développement. La méthode LS-STAG est ensuite appliquée à divers écoulements newtoniens et non-newtoniens dans des géométries extrudées 3D (conduite axisymétrique, cylindre circulaire, conduite cylindrique avec élargissement brusque, etc.) pour lesquels des résultats de références et des données expérimentales sont disponibles. Le but de ces investigations est d’évaluer la précision de la méthode LS-STAG, d’évaluer la polyvalence de la méthode pour les applications d’écoulement dans différents régimes (fluides newtoniens et rhéofluidifiants, écoulement laminaires stationnaires et instationnaires, écoulements granulaires) et de comparer ses performances avec de méthodes numériques bien établies (méthodes non structurées et de frontières immergées) / The LS-STAG method is an immersed boundary/cut-cell method for viscous incompressible flows based on the staggered MAC arrangement for Cartesian grids where the irregular boundary is sharply represented by its level-set function. This approach results in a significant gain in computer resources compared to commercial body-fitted CFD codes. The 2D version of LS-STAG method is now well-established and this manuscript presents its extension to 3D geometries with translational symmetry in the z direction (3D extruded configurations). This intermediate step will be regarded as the milestone for the full 3D solver, since both discretization and implementation issues on distributed memory machines are tackled at this stage of development. The LS-STAG method is then applied to Newtonian and non-Newtonian flows in 3D extruded geometries (axisymmetric pipe, circular cylinder, duct with an abrupt expansion, etc.) for which benchmark results and experimental data are available. The purpose of these investigations is to evaluate the accuracy of LS-STAG method, to assess the versatility of method for flow applications at various regimes (Newtonian and shear-thinning fluids, steady and unsteady laminar to turbulent flows, granular flows) and to compare its performance with well-established numerical methods (body-fitted and immersed boundary methods)
12

Simulations numériques d’écoulements incompressibles interagissant avec un corps déformable : application à la nage des poissons / Numerical simulation of incompressible flows interacting with forced deformable bodies : Application to fish swimming

Ghaffari Dehkharghani, Seyed Amin 15 December 2014 (has links)
Une méthode numérique précise et efficace est proposée pour la simulation de corps déformables interagissant avec un écoulement incompressible. Les équations de Navier-Stokes, considérées dans leur formulation vorticité fonction de courant, sont discrétisées temporellement et spatialement à l'aide respectivement d'un schéma d'ordre 4 de Runge-Kutta et par des différences finies compactes. Grâce à l'utilisation d'un maillage uniforme, nous proposons un nouveau solveur direct au quatrième ordre pour l'équation de Poisson, permettant de garantir l'incompressibilité au zéro machine sur une grille optimale. L'introduction d'un corps déformable dans l'écoulement de fluide est réalisée au moyen d'une méthode de pénalisation de volume. La déformation du corps est imposée par l'utilisation d'un maillage lagrangien structuré mobile qui interagit avec le fluide environnant en raison des forces hydrodynamiques et du moment (calculés sur le maillage eulérien de référence). Une loi de contrôle efficace de la courbure d'un poisson anguilliforme nageant vers une cible prescrite est proposée. La méthode numérique développée prouve son efficacité et précision tant dans le cas de la nage du poisson mais aussi plus d'un grand nombre de problèmes d'interactions fluide-structure. / We present an efficient algorithm for simulation of deformable bodies interacting with two-dimensional incompressible flows. The temporal and spatial discretizations of the Navier--Stokes equations in vorticity stream-function formulation are based on classical fourth-order Runge--Kutta and compact finite differences, respectively. Using a uniform Cartesian grid we benefit from the advantage of a new fourth-order direct solver for the Poisson equation to ensure the incompressibility constraint down to machine zero over an optimal grid. For introducing a deformable body in fluid flow, the volume penalization method is used. A Lagrangian structured grid with prescribed motion covers the deformable body which is interacting with the surrounding fluid due to the hydrodynamic forces and the torque calculated on the Eulerian reference grid. An efficient law for controlling the curvature of an anguilliform fish, swimming toward a prescribed goal, is proposed which is based on the geometrically exact theory of nonlinear beams and quaternions. Validation of the developed method shows the efficiency and expected accuracy of the algorithm for fish-like swimming and also for a variety of fluid/solid interaction problems.
13

Simulation de la nage anguilliforme

Lapierre, David 05 1900 (has links)
Ce document traite premièrement des diverses tentatives de modélisation et de simulation de la nage anguilliforme puis élabore une nouvelle technique, basée sur la méthode de la frontière immergée généralisée et la théorie des poutres de Reissner-Simo. Cette dernière, comme les équations des fluides polaires, est dérivée de la mécanique des milieux continus puis les équations obtenues sont discrétisées afin de les amener à une résolution numérique. Pour la première fois, la théorie des schémas de Runge-Kutta additifs est combinée à celle des schémas de Runge-Kutta-Munthe-Kaas pour engendrer une méthode d’ordre de convergence formel arbitraire. De plus, les opérations d’interpolation et d’étalement sont traitées d’un nouveau point de vue qui suggère l’usage des splines interpolatoires nodales en lieu et place des fonctions d’étalement traditionnelles. Enfin, de nombreuses vérifications numériques sont faites avant de considérer les simulations de la nage. / This paper first discusses various attempts at modeling and simulating anguilliform swimming, then we develop a new technique, based on a method of generalized immersed boundary and the beam theory of Reissner-Simo. Subsequent to the derivation of the equations of polar fluids, the beam theory is derived from continuum mechanics and the resulting equations are then discretized, allowing a numerical solution. For the first time, the theory of additive Runge-Kutta schemes are combined with the Runge-Kutta-Munthe-Kaas method to generate schemes of arbitrarily high formal order of convergence. Moreover, the interpolation and spreading operations are handled from a new point of view that suggests the use of interpolatory nodal splines instead of spreading traditional functions. Finally, many numerical verifications are done before considering simulations of swimming.

Page generated in 0.0504 seconds