Spelling suggestions: "subject:"fuel well,"" "subject:"fuel cell,""
281 |
Doped Perovskite Materials for Solid Oxide Fuel Cell (SOFC) Anodes and Electrochemical Oxygen SensorsPenwell, William January 2014 (has links)
This work focused on the study of three independent projects involving perovskite oxide materials and their applications as solid oxide fuel cell (SOFC) anodes and electrochemical oxygen sensors. The underlying theme is the versatility and tune-ability of the perovskite structure. Reactivity and conductivity (ionic as well as electronic) are modified to optimize performance in a specific application.
The effect of Ce doping on the structure and the conductivity of BaFeO3 perovskite materials is investigated and the resulting materials are applied as oxygen sensors. The new perovskite family, Ba1-xCexFeO3-δ (x=0, 0.01, 0.03, and 0.05), was prepared via a sol-gel method. Powder XRD indicates a hexagonal structure for BaFeO3 with a change to a cubic perovskite upon Cerium doping at the A site. The solubility limit of Ce at the A site was experimentally determined to be between 5-7 mol %. Bulk, electronic and ionic conductivities of BaFeO3-δ and Ba0.95Ce0.05FeO3-δ were measured in air at temperatures up to 1000˚C. Cerium doping increases the conductivity throughout the entire temperature range with a more pronounced effect at higher temperatures. At 800˚C the conductivity of Ba0.95Ce.05FeO3-δ reaches 3.3 S/cm. Pellets of Ba0.95Ce.05FeO3-δ were tested as gas sensors at 500 and 700˚C and show a linear, reproducible response to O2.
Promising perovskite anodes have been tested in high sulfur fuel feeds. A series of perovskite solid oxide fuel cell (SOFC) anode materials: Sm0.95Ce0.05FeO3-δ, Sm0.95Ce0.05Fe0.97Ni0.03O3-δ and Sm0.95Ce0.05Fe0.97Co0.03O3-δ have been tested for sulfur tolerance at 500°C. The introduction of the extreme 5% H2S enhances the performance of these anodes, verified by EIS and CA experiments. Post mortem analyses indicate that the performance
XII
enhancement arises from the partial sulfidation of the anode, leading to the formation of FeS2, Sm3S4 and S on the perovskite surface. Testing in lower concentrations of sulfur, more common in sour fuels, 0.5% H2S, also enhances the performance of these materials. The SCF-Co anode shows promising stability and an increase in exchange current density, io, from 13.72 to 127.02 mA/cm2 when switching from H2 to 0.5% H2S/99.5% H2 fuel composition. Recovery tests performed on the SCF-Co anode conclude that the open cell voltage (OCV) and power density of these cells recover within 4 hours of H2S removal. We conclude that the formation of metal sulfide species is only partially reversible, yielding an anode material with an overall lower Rct upon switching back to pure H2. Combining their performance in sulfur containing fuels with their previously reported coke tolerance makes these perovskites especially attractive as low temperature SOFC anodes in sour fuels.
A new perovskite family Ba1-xYxMoO3 (x=0-0.05) has been investigated in regards to electrical conductivity and performance as IT-SOFC anode materials for the oxidation of H2. Refinement of p-XRD spectra as well as SEM imaging conclude that the solubility limit of Y doping at the A site is 5 mol%, beyond which Y2O3 segregation occurs. The undoped BaMoO3 sample has a colossal room temperature conductivity of 2500 S/cm in dry H2. All materials maintain metallic conductivity in the temperature range of 25-1000°C with resistance increasing with Y doping. The Ba1-xYxMoO3 (x=0, 0.05) materials exhibit good performance as SOFC anode materials between 500-800°C, with Rct values at 500°C in dry H2 of 3.15 and 6.33 ohm*cm2 respectively. The catalytic performance of these perovskite anodes is directly related to electronic conductivity, as concluded from composite anode performance.
|
282 |
First Principles Studies of Perovskites for Intermediate Temperature Solid Oxide Fuel Cell CathodesSalawu, Omotayo Akande 15 May 2017 (has links)
Fundamental advances in cathode materials are key to lowering the operating temperature of solid oxide fuel cells (SOFCs). Detailed understanding of the structural, electronic and defect formation characteristics are essential for rational design of cathode materials. In this thesis we employ first principles methods to study La(Mn/Co)O3 and LnBaCo2O5+δ (Ln = Pr, Gd; δ = 0.5, 1) as cathode for SOFCs. Specifically, factors affecting the O vacancy formation and migration are investigated.
We demonstrate that for LaMnO3 the anisotropy effects often neglected at high operating temperatures become relevant when the temperature is lowered. We show that this fact has consequences for the material properties and can be further enhanced by strain and Sr doping. Tensile strain promotes both the O vacancy formation and migration in pristine and Sr doped LaMnO3, while Sr doping enhances the O vacancy formation but not the migration.
The effect of A-site hole doping (Mg2+, Ca2+ or Ba2+) on the electronic and magnetic properties as well as the O vacancy formation and migration in LaCoO3 are studied. All three dopants are found to facilitate O vacancy formation. Substitution of La3+ with Ba2+/Mg2+ yields the lowest O vacancy formation energy for low/intermediate spin Co, implying that not only the structure, but also the spin state of Co is a key parameter. Only for low spin Co the ionic radius is correlated with the O migration barrier. Enhanced migration for intermediate spin Co is ascribed to the availability of additional space at the transition state.
For LnBaCo2O5+δ we compare the O vacancy formation in GdBaCo2O5.5 (Pmmm symmetry) and GdBaCo2O6 (P4/mmm symmetry), and the influence of Sr doping. The O vacancy formation energy is demonstrated to be smaller in the already O deficient compound. This relation is maintained under Sr doping. It turns out that Sr doping can be utilized to significantly enhance the O vacancy formation in both compounds. The observed trends are explained on a microscopic level. Furthermore, we consider antisite defects as they may modify the electronic and O migration properties but are rarely studied in double perovskite oxides. It turns out that O vacancy formation is significantly easier in PrBaCo2O5.5 than in GdBaCo2O5.5, the difference in formation energy being hardly modified by antisite defects. Finally, having established that the O vacancy formation energy is significantly lower in PrBaCo2O5.5 than in GdBaCo2O5.5, we study the O Frenkel energy and migration of O ions in PrBa(Co/Fe)2O5.5. The electronic structure and charge redistribution during defect formation are analyzed. We demonstrate that Co↔Fe substitution strongly affects the formation of defects and, consequently, the O migration. The low O Frenkel energy points to a high concentration of O vacancies. The migration of the O ions shows a distinct anisotropy.
|
283 |
Electrocatalytic Oxidation of Carbohydrates Via Surface Immobilized ViologenScott, Dallin D.V. 10 December 2021 (has links)
Earths most abundant biomolecules, carbohydrates, offer tremendous potential forelectricity production. Carbohydrate fuel cells are electrical fuel cells that can harvest the stored electrons in carbohydrates and offer a cheap and efficient method that could help solve growing energy demands, while providing a renewable green energy source. Viologen-mediated carbohydrate fuel cells have demonstrated the ability to accelerate carbohydrate oxidation while decreasing partial or incomplete oxidation products reducing the electricity production. Subsequent studies suggested polymeric viologen compounds could improve the efficiency by increasing the local concentration of viologen. This thesis presents the utility of surface-immobilized viologen mediators for the oxidation of simple carbohydrates. Methyl viologen formed a self-assembled monolayer on a gold electrode surface to enhance its electrocatalytic oxidation of dihydroxyacetone, fructose, and glucose. The thiolated viologen formed surface adsorbed films on the gold electrodes that where consistent with monolayers and were characterized by quartz crystal microbalance and cyclic voltammetry. Cyclic voltammetry indicated that carbohydrates can generate electricity when combined with methyl viologen. Monolayer formation of methyl viologen indicates that immobilized mediators can be used to enhance oxidation of simple carbohydrates to generate electricity. This same tethered mediator strategy could be used for other mediators to increase their electrochemical efficiency in carbohydrate fuel cells.
|
284 |
Fuel cell and intelligent power processing using nonlinear controlJanuary 2004 (has links)
archives@tulane.edu / This dissertation is a detailed scientific study concerning a proton exchange membrane fuel cell, which is coupled to a DC-to-DC converter as the power processor, serving as a power source. The novel aspect of the dissertation is the use of a new controller or nonlinear observer to predict parameter estimation of the fuel cell and the DC-to-DC converter as the load potential changes for the automated control system. Nonlinear control algorithms, which include nonlinear observers, were developed for such systems. / 1 / Sean
|
285 |
Návrh palivového pohonu ultralehkého letounu s využitím palivových článků / Development of propulsion for ultralight plane with fuel cells stacksSmetana, Martin January 2010 (has links)
This work deals with development of propulsion for ultralight plane with using fuel cells technology. This thesis is described different types of fuel cells, fuels, electric motors and other component parts needed to build a functioning drive as a whole. The thesis also described situation in the market of fuel cell technology, production facilities and hydrogen tanks. Work includes part of the design drawings of the proposed solutions of thesis.
|
286 |
Iontoměničové membrány na bázi polyvinylalkoholu pro palivové články s polymerním elektrolytem / Polyvinyl alcohol based membranes for polymer electrolyte membrane fuel cellsBenčik, Ondřej January 2013 (has links)
Fuelcells are perspective alternative source of power. Currently used polymer electrolyte membrane. They have good qualities, but they are expensive. This is the reason, why we looking for alternative.This work deal with research qualities polymer electrolyte membrane based on Polyvinylalcohol. This polymer elecrolyte membrane asassembly to MEA structure and research qualities. This qualities based on electrical and non electrical value.
|
287 |
Možnosti využití vodíku v letectví / Possibilities of Using Hydrogen in AviationJurečka, Radek January 2013 (has links)
The thesis is focused to hydrogen usage in the aviation. There are shown existing types of fuel cells and hydrogen storage possibilities. Main part of the thesis is conceptual design of small UAV with hydrogen fuel cell, which will show potential of hydrogen power system.
|
288 |
Development of Micro-sized Microbial Fuel Cells as Ultra-Low Power Generators Using Nano-engineered Materials and Sustainable DesignsMink, Justine E. 12 1900 (has links)
Many of the most pressing global challenges today and in the future center around the
scarcity of sustainable energy and water sources. The innovative microbial fuel cell
(MFC) technology addresses both as it utilizes bacteria to convert wastewaters into
electricity. Advancing this technology requires a better understanding of the optimal
materials, designs and conditions involved. The micro-sized MFC was recently
developed to serve this need by providing a rapid testing device requiring only a fraction
of the materials. Further, development of micro-liter scale MFCs has expanded into
potential applications such as remote and self-sustained power sources as well as on-chip
energy generators. By using microfabrication, the fabrication and assembly of microsized
MFCs is potentially inexpensive and mass produced.
The objective of the work within this dissertation was to explore and optimize the
micro-sized MFC to maximize power and current generation towards the goal of a usable
and application-oriented device. Micro-sized MFCs were examined and developed using
four parameters/themes considered most important in producing a high power generating,
yet usable device:
Anode- The use of nano-engineered carbon nanomaterials, carbon nanotubes and
graphene, as anode as well as testing semiconductor industry standard anode contact area
materials for enhanced current production.
5
Cathode- The introduction of a membrane-less air cathode to eliminate the need for
continuous chemical refills and making the entire device mobile.
Reactor design- The testing of four different reactor designs (1-75 μLs) with various
features intended to increase sustainability, cost-effectiveness, and usability of the microsized
MFC.
Fuels- The utilization of real-world fuels, such as industrial wastewaters and saliva,
to power micro-sized MFCs.
The micro-sized MFC can be tailored to fit a variety of applications by varying these
parameters. The device with the highest power production here was designed to be an
inexpensive and robust power source in applications like point-of-care diagnostics in
developing countries. This 25 μL graphene nanomaterial anode, air cathode device in an
inexpensive flexible rubber architecture was powered by saliva and achieved 3.55
μW/cm2 and 35.2 W/m3. The continued optimization of MFC technology promises many
interesting and innovative applications.
|
289 |
Comprehensive Study of Single component electrolyte-free fuel cell: Joint solar cell and fuel cell mechanismMadaan, Sushant January 2014 (has links)
No description available.
|
290 |
The Effect of Barium Non-Stoichiometry on the Phase Structure, Sintering and Electrical Conductivity of BaZr0.7Pr0.1Y0.2O3Mohamed Shibly, Kaamil 05 May 2015 (has links)
This thesis attempts to test the effects of barium non stoichiometry and varying calcination temperatures on the microstructure and electrical conductivity of BaxZr0.7Pr0.1Y0.2O3- δ (x = 0.9, 1.0, 1.1). BZPY powders were fabricated using a combustion method, with the quantity of barium carefully controlled to create powders with a 10% molar excess or deficiency of barium. Then, portions of the precursor were calcined at 900 ºC, 1000 ºC, 1100 ºC, 1200 ºC and 1300 ºC for 5 h. The resulting calcined powders were pressed into pellets and sintered at 1600 ºC for 10 h, in a powder bath of the same chemical composition. In all, three chemically different powders were synthesized, and each composition was subjected to five different calcination temperatures, resulting in fifteen different samples to characterise.
The precursor from the combustion method was characterised by using an STA to perform both TG and DSC simultaneously. The chemical composition of the precursor and calcined samples was analysed using ICP-OES. XRD was used to characterise the phases of both the powders and the sintered pellets. Lattice parameter indexing using Topaz and Scherrer's equation were used to extract the lattice parameters and crystallite sizes respectively. The microstructure of the pellets was examined using an SEM, the grain size measured using a linear intercept method and pore size using ImageJ. Finally, EIS was used to measure the conductivity of the pellets in dry and wet Argon atmospheres, with silver electrodes.
Unfortunately, neither changes to barium stoichiometry nor partial calcination could improve the performance of BZPY. Partially calcined samples did not give rise to dense pellets, barium deficient samples showed inferior conductivity and barium excess samples, while showing higher conductivity than the barium deficient pellets at high temperature, were fragile and had to be handled carefully.
Ultimately, the attempt to improve the performance of BZPY did not succeed and alternate methods of improving the grain growth need to be sought.
|
Page generated in 0.0376 seconds