Spelling suggestions: "subject:"fully convolutional bnetwork"" "subject:"fully convolutional conetwork""
1 |
DEEP LEARNING-BASED PANICLE DETECTION BY USING HYPERSPECTRAL IMAGERYRuya Xu (9183242) 30 July 2020 (has links)
<div>Sorghum, which is grown internationally as a cereal crop that is robust to heat, drought, and disease, has numerous applications for food, forage, and biofuels. When monitoring the growth stages of sorghum, or phenotyping specific traits for plant breeding, it is important to identify and monitor the panicles in the field due to their impact relative to grain production. Several studies have focused on detecting panicles based on data acquired by RGB and multispectral remote sensing technologies. However, few experiments have included hyperspectral data because of its high dimensionality and computational requirements, even though the data provide abundant spectral information. Relative to analysis approaches, machine learning, and specifically deep learning models have the potential of accommodating the complexity of these data. In order to detect panicles in the field with different physical characteristics, such as colors and shapes, very high spectral and spatial resolution hyperspectral data were collected with a wheeled-based platform, processed, and analyzed with multiple extensions of the VGG-16 Fully Convolutional Network (FCN) semantic segmentation model.</div><div><br></div><div>In order to have correct positioning, orthorectification experiments were also conducted in the study to obtain the proper positioning of the image data acquired by the pushbroom hyperspectral camera at near range. The scale of the DSM derived from LiDAR that was used for orthorectification of the hyperspectral data was determined to be a critical issue, and the application of the Savitzky-Golay filter to the original DSM data was shown to contribute to the improved quality of the orthorectified imagery.</div><div><br></div><div>Three tuned versions of the VGG-16 FCN Deep Learning architecture were modified to accommodate the hyperspectral data: PCA&FCN, 2D-FCN, and 3D-FCN. It was concluded that all the three models can detect the late season panicles included in this study, but the end-to-end models performed better in terms of precision, recall, and the F-score metrics . Future work should focus on improving annotation strategies and the model architecture to detect different panicle varieties and to separate overlapping panicles based on an adequate quantities of training data acquired during the flowering stage.</div>
|
2 |
Sample Image Segmentation of Microscope SlidesPersson, Maija January 2022 (has links)
In tropical and subtropical countries with bad infrastructure there exists diseases which are often neglected and untreated. Some of these diseases are caused by parasitic intestinal worms which most often affect children severely. The worms spread through parasite eggs in human stool that end up in arable soil and drinking water. Over one billion people are infected with these worms, but medication is available. The problem is the ineffective diagnostic method hindering the medication to be distributed effectively. In the process of designing an automated microscope for increased effectiveness the solution for marking out the stool sample on the microscope slide is important for decreasing the time of diagnosis. This study examined the active contour model and four different semantic segmentation networks for the purpose of delineating the stool sample from the other parts of the microscope slide. The Intersection-over-Union (IoU) measurement was used to measure the performance of the models. Both active contour and the networks increased the IoU compared to the current implementation. The best model was the FCN-32 network which is a fully convolutional network created for semantic segmentation tasks. This network had an IoU of 95.2%, a large increase compared to the current method which received an IoU of 77%. The FCN-32 network showed great potential of decreasing the scanning time while still keeping precision of the diagnosis.
|
3 |
Semantic Segmentation Using Deep Learning Neural ArchitecturesSarpangala, Kishan January 2019 (has links)
No description available.
|
4 |
Applying Multivariate Time Series Data and Deep Learning to Probability of Default Estimation / Kreditriskbedömning Baserat på Multivariat Tidsseriedata och DjupinlärningVävinggren, David, Säll, Emil January 2024 (has links)
The problem of determining the probability of default or credit risk for companies is crucial when providing financial services. This problem is often modeled based on snapshot data that does not take the time dimension into account. Instead, we approach the problem with enterprise resource planning data in time series. With the added complexity the time series introduce, we pose that deep learning models could be suitable for the task. A comparison of a fully convolutional network and a transformer encoder was made to the current state-of-the-art model for the probability of default problem, XGBoost. The comparison showed that XGBoost generalized very well to the time series domain, even well enough to beat the deep learning models across all evaluation metrics. Furthermore, time series data with monthly, quarterly and yearly timestamps over three years was tested. Also, public features that could be extracted from quarterly and annual financial reports were compared with internal enterprise resource planning data. We found that the introduction of time series to the problem improves the performance and that models based on internal data outperform the ones based on public data. To be more precise, we argue that the dataset being based on small to medium-sized companies lessens the impact of highly granular data, and makes the selection of what features to include more prominent. This is something XGBoost takes advantage of in a very efficient way, especially when extracting features that capture the behavior of the time series, causing it to beat the deep learning competitors even though it does not pick up on the sequential aspect of the data.
|
5 |
A Comparative Study of Machine Learning Algorithms for Angular Position Estimation in Assembly Tools / Jämförande studie av maskininlärningsalgoritmer för skattning av vinkelposition hos monteringsverktygFagerlund, Henrik January 2023 (has links)
The threaded fastener is by far the most common method for securing components together and plays a significant role in determining the quality of a product. Atlas Copco offers industrial tools for tightening these fasteners, which are today suffering from errors in the applied torque. These errors have been found to behave in periodic patterns which indicate that the errors can be predicted and therefore compensated for. However, this is only possible by knowing the rotational position of the tool. Atlas Copco is interested in the possibility of acquiring this rotational position without installing sensors inside the tools. To address this challenge, the thesis explores the feasibility of estimating the rotational position by analysing the behaviour of the errors and finding periodicities in the data. The objective is to determine whether these periodicities can be used to accurately estimate the rotation of the torque errors of unknown data relative to errors of data where the rotational position is known. The tool analysed in this thesis exhibits a periodic pattern in the torque error with a period of 11 revolutions. Two methods for estimating the rotational position were evaluated: a simple nearest neighbour method that uses mean squared error (MSE) as distance measure, and a more complex circular fully convolutional network (CFCN). The project involved data collection from a custom-built setup. However, the setup was not fully completed, and the models were therefore evaluated on a limited dataset. The results showed that the CFCN method was not able to identify the rotational position of the signal. The insufficient size of the data is discussed to be the cause for this. The nearest neighbour method, however, was able to estimate the rotational position correctly with 100% accuracy across 1000 iterations, even when looking at a fragment of a signal as small as 40%. Unfortunately, this method is computationally demanding and exhibits slow performance when applied to large datasets. Consequently, adjustments are required to enhance its practical applicability. In summary, the findings suggest that the nearest neighbour method is a promising approach for estimating the rotational position and could potentially contribute to improving the accuracy of tools. / Skruvförband är den vanligaste typen av förband för att sammanfoga komponenter och är avgörande för en produkts kvalitet. Atlas Copco tillverkar industriverktyg avsedda för sådana skruvförband, som dessvärre lider av små avvikelser i åtdragningsmomentet. Avvikelserna uppvisar ett konsekvent periodiskt mönster, vilket indikerar att de är förutsägbara och därför möjliga att kompenseras för. Det är dock endast möjligt genom att veta verktygets vinkelposition. Atlas Copco vill veta om det är möjligt att erhålla vinkelpositionen utan att installera sensorer i verktygen. Denna uppsats undersöker möjligheten att uppskatta vinkelpositionen genom att analysera beteendet hos avvikelserna i åtdragningsmomentet och identifiera periodiciteter i datan, samt undersöka om dessa periodiciteter kan utnyttjas för att uppskatta rotationen hos avvikelserna hos okänd data i förhållande till tidigare data. Det verktyget som används i detta projekt uppvisar en tydlig periodicitet med en period på 11 varv. Två metoder för att uppskatta vinkelpositionen utvärderades: en simpel nearest neighbour-metod som använder mean squared error (MSE) som mått för avstånd, och ett mer komplext circular fully convolutional network (CFCN). Projektet innefattade datainsamling från en egendesignad testrigg som tyvärr aldrig blev färdigställd, vilket medförde att utvärderingen av modellerna utfördes på ett begränsat dataset. Resultatet indikerade att CFCN-metoden kräver en större datamängd för att kunna uppskatta rotationen hos den okända datan. Nearest neighbour-metoden lyckades uppskatta rotationen med 100% noggrannhet över 1000 iterationer, även när endast ett segment så litet som 40% av signalen utvärderades. Tyvärr lider denna metod av hög beräkningsbelastning och kräver förbättringar för att vara praktiskt tillämpbar. Sammantaget visade resultaten att nearest neighbour-metoden har potential att vara ett lovande tillvägagångssätt för att uppskatta vinkelpositionen och kan på så sätt bidra till förbättring av verktygens noggrannhet.
|
6 |
Object Detection in Domain Specific Stereo-Analysed Satellite ImagesGrahn, Fredrik, Nilsson, Kristian January 2019 (has links)
Given satellite images with accompanying pixel classifications and elevation data, we propose different solutions to object detection. The first method uses hierarchical clustering for segmentation and then employs different methods of classification. One of these classification methods used domain knowledge to classify objects while the other used Support Vector Machines. Additionally, a combination of three Support Vector Machines were used in a hierarchical structure which out-performed the regular Support Vector Machine method in most of the evaluation metrics. The second approach is more conventional with different types of Convolutional Neural Networks. A segmentation network was used as well as a few detection networks and different fusions between these. The Convolutional Neural Network approach proved to be the better of the two in terms of precision and recall but the clustering approach was not far behind. This work was done using a relatively small amount of data which potentially could have impacted the results of the Machine Learning models in a negative way.
|
7 |
Detekce vad vláknitého materiálu užitím metod strojového učení / Defect detection on fiber materials using machine learningLang, Matěj January 2019 (has links)
Cílem této diplomové práce je automatizace detekce vad ve vláknitých materiálech. Firma SILON se již přes padesát let zabývá výrobou jemné vaty z recyklovaných PET lahví. Tato vata se následně používá ve stavebnictví, automobilovém průmyslu, ale nejčastěji v dámských hygienických potřebách a dětských plenách. Cílem firmy je produkovat co nejkvalitnější výrobek a proto je každá dávka testována v laboratoři s několika přísnými kritérii. Jednám z testů je i množství vadných vláken, jako jsou zacuchané smotky vláken, nebo nevydloužená vlákna, která jsou tvrdá a snadno se lámou. Navrhovaný systém sestává ze snímací lavice fungující jako scanner, která nasnímá vzorek vláken, který byl vložen mezi dvě skleněné desky. Byla provedena série testů s různým osvětlením, která ověřovala vlastnosti Rhodaminu, který se používá právě na rozlišení defektů od ostatních vláken. Tyto defekty mají zpravidla jinou molekulární strukturu, na kterou se barvivo chytá lépe. Protože je Rhodamin fluorescenční barvivo, je možné ho například pod UV světlem snáze rozeznat. Tento postup je využíván při manuální detekci. Při snímání kamerou je možno si vypomoci filtrem na kameře, který odfiltruje excitační světlo a propustí pouze světlo vyzářené Rhodaminem. Součástí výroby skeneru byla i tvorba ovládacího programu. Byla vytvořena vlastní knihovna pro ovládání motoru a byla upravena knihovna pro kameru. Oba systém pak bylo možno ovládat pomocí jednotného GUI, které zajišťovalo pořizování snímku celé desky. Pomocí skeneru byla nasnímána řada snímků, které bylo třeba anotovat, aby bylo možné naučit počítač rozlišovat defekty. Anotace proběhla na pixelové úrovni; každý defekt byl označen v grafickém editoru ve speciální vrstvě. Pro rozlišování byla použita umělá neuronová síť, která funguje na principu konvolucí. Tento typ sítě je navíc plně konvoluční, takže výstupem sítě je obraz, který by měl označit na tom původním vadné pixely. Výsledky naučené sítě jsou v práci prezentovány a diskutovány. Síť byla schopna se naučit rozeznávat většinu defektů a spolehlivě je umí rozeznat a segmentovat. Potíže má v současné době s detekcí rozmazaných defektů na krajích zorného pole a s defekty, jejichž hranice není tolik zřetelná na vstupních obrazech. Nutno zmínit, že zákazník má zájem o kompletní řešení scanneru i s detekčním softwarem a vývoj tohoto zařízení bude pokračovat i po závěru této diplomové práce.
|
Page generated in 0.1044 seconds