• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Condition Monitoring : Using Computational intelligence methods

Kotta, Anwesh 06 November 2015 (has links) (PDF)
Machine tool components are widely used in many industrial applications. In accordance with their usage, a reliable health monitoring system is necessary to detect defects in these components in order monitor machinery performance and avoid malfunction. Even though several techniques have been reported for fault detection and diagnosis, it is a challenging task to implement a condition monitoring system in real world applications due to their complexity in structure and noisy operating environment. The primary objective of this thesis is to develop novel intelligent algorithms for a reliable fault diagnosis of machine tool components. Another objective is to use Micro Electro Mechanical System (MEMS) sensor and interface it with Raspberry pi hardware for the real time condition monitoring. Primarily knowledge based approach with morphological operators and Fuzzy Inference System is proposed, the e˙ectiveness of this approach lies in the selection of structuring elements(SEs). When this is evaluated with di˙erent classes of bearing fault signals, it is able to detect the fault frequencies e˙ectively. Secondarily, An analytical approach with multi class support machine is proposed, this method has uniqueness of learning on its own with out any prior knowledge, the e˙ectiveness of this method lies on selected features and used kernel for converging. Results have shown that RBF (Radial Bias Function) kernel, which is commonly known as gauss kernel has good performance in identifying faults with less computation time. An idea of prototyping these methods has triggered in using Micro Electro Mechanical System (MEMS) sensor for data acquisition and real time Condition Monitoring. LIS3DH accelerometer sensor is used for the data acquisition of spindle for capturing high frequency fault signals. The measured data is analyzed and compared with the industrial sensor k-shear accelerometer type 8792A.
2

Condition Monitoring : Using Computational intelligence methods

Kotta, Anwesh 16 July 2015 (has links)
Machine tool components are widely used in many industrial applications. In accordance with their usage, a reliable health monitoring system is necessary to detect defects in these components in order monitor machinery performance and avoid malfunction. Even though several techniques have been reported for fault detection and diagnosis, it is a challenging task to implement a condition monitoring system in real world applications due to their complexity in structure and noisy operating environment. The primary objective of this thesis is to develop novel intelligent algorithms for a reliable fault diagnosis of machine tool components. Another objective is to use Micro Electro Mechanical System (MEMS) sensor and interface it with Raspberry pi hardware for the real time condition monitoring. Primarily knowledge based approach with morphological operators and Fuzzy Inference System is proposed, the e˙ectiveness of this approach lies in the selection of structuring elements(SEs). When this is evaluated with di˙erent classes of bearing fault signals, it is able to detect the fault frequencies e˙ectively. Secondarily, An analytical approach with multi class support machine is proposed, this method has uniqueness of learning on its own with out any prior knowledge, the e˙ectiveness of this method lies on selected features and used kernel for converging. Results have shown that RBF (Radial Bias Function) kernel, which is commonly known as gauss kernel has good performance in identifying faults with less computation time. An idea of prototyping these methods has triggered in using Micro Electro Mechanical System (MEMS) sensor for data acquisition and real time Condition Monitoring. LIS3DH accelerometer sensor is used for the data acquisition of spindle for capturing high frequency fault signals. The measured data is analyzed and compared with the industrial sensor k-shear accelerometer type 8792A.
3

Modellierung und Erkennung von Fahrsituationen und Fahrmanövern für sicherheitsrelevante Fahrerassistenzsysteme / Modeling and identifying of driving situations and driving maneuvers for safety-relevant driving assistance systems

Schneider, Jörg Henning 01 November 2010 (has links) (PDF)
Die vorliegende Arbeit beschreibt ein generisches Verfahren zur wahrscheinlichkeitsbasierten Erkennung von Fahrsituationen und Fahrmanövern für sicherheitsrelevante Fahrerassistenzsysteme. Fahrsituationen und Manöver unterliegen einer gewissen Unsicherheit basierend auf der unterschiedlichen Situationswahrnehmung bzw. Manöverdurchführung der Fahrzeugführer. Diese Unsicherheitskomponente wird in den Ansatz zur Situations- und Manövererkennung mit einbezogen. Ein weiterer Unsicherheitsaspekt beruht auf den ungenauen Umgebungsinformationen auf denen die Situations- und Manövererkennung basiert. Beide Unsicherheitsursachen sind völlig unabhängig voneinander und werden aus diesem Grund separat betrachtet und modelliert. Zur Modellierung dieser beiden Unsicherheitsaspekte bedient sich der vorgestellte Ansatz der Fuzzy-Theorie, der Theorie der probabilistischen Netzen sowie Verfahren zur Fehlerfortpflanzung und Sensitivitätsanalyse. Nach der theoretischen Vorstellung dieser Methodiken wird in der Arbeit detailliert auf den Einsatz und das Zusammenspiel der einzelnen Verfahren zur Erkennung der Fahrsituationen und Fahrmanöver eingegangen. Die Umsetzbarkeit des vorgestellten Verfahrens wird am Beispiel der Notbremssituation gezeigt. Die Notbremssituation setzt sich aus unterschiedlichen Teilsituationen und Manövern zusammen. Die Erkennung der einzelnen Situationen und Manöver sowie die Zusammenführung zur übergeordneten Notbremssituation wurden mit Hilfe des vorgestellten Verfahrens realisiert. Zur Evaluierung der Erkennungsgüte wurden sowohl Messdaten aus dem Straßenverkehr als auch realitätsnahe Daten, aufgezeichnet auf Versuchsstrecken, herangezogen. / The present work describes a generic method for the probabilistic identification of driving situations and driving manoeuvres for safety relevant driver assistance systems. Driving situations and driving manoeuvres underlie a certain uncertainty based on the different situation perception and manoeuvre execution of the driver. This uncertainty component is considered in the approach for the situation and manoeuvre identification. An additional uncertainty aspect is based on the inaccurate environment information, the identification of driving situations and manoeuvres depend on. Both uncertainty aspects are completely independent and are considered and modelled separately for this reason. For modelling both of these uncertainty aspects the present approach is using the fuzzy theory, probabilistic networks, as well as methods for error propagation and sensitivity analysis. After introducing these techniques theoretically, the application and the interaction of the single methods to identify the driving situations and manoeuvres is described in detail. The practicability of the introduced proceeding is shown exemplarily on the emergency brake situation. The emergency brake situation consists of several situation and manoeuvre components. The identification of the single situations and manoeuvres as well as the combination to the higher emergency brake situation is realised with the introduced proceeding. Measuring data gathered on road traffic and close to reality data measured on a test track were used to evaluate the identification quality.
4

Modellierung und Erkennung von Fahrsituationen und Fahrmanövern für sicherheitsrelevante Fahrerassistenzsysteme

Schneider, Jörg Henning 01 June 2010 (has links)
Die vorliegende Arbeit beschreibt ein generisches Verfahren zur wahrscheinlichkeitsbasierten Erkennung von Fahrsituationen und Fahrmanövern für sicherheitsrelevante Fahrerassistenzsysteme. Fahrsituationen und Manöver unterliegen einer gewissen Unsicherheit basierend auf der unterschiedlichen Situationswahrnehmung bzw. Manöverdurchführung der Fahrzeugführer. Diese Unsicherheitskomponente wird in den Ansatz zur Situations- und Manövererkennung mit einbezogen. Ein weiterer Unsicherheitsaspekt beruht auf den ungenauen Umgebungsinformationen auf denen die Situations- und Manövererkennung basiert. Beide Unsicherheitsursachen sind völlig unabhängig voneinander und werden aus diesem Grund separat betrachtet und modelliert. Zur Modellierung dieser beiden Unsicherheitsaspekte bedient sich der vorgestellte Ansatz der Fuzzy-Theorie, der Theorie der probabilistischen Netzen sowie Verfahren zur Fehlerfortpflanzung und Sensitivitätsanalyse. Nach der theoretischen Vorstellung dieser Methodiken wird in der Arbeit detailliert auf den Einsatz und das Zusammenspiel der einzelnen Verfahren zur Erkennung der Fahrsituationen und Fahrmanöver eingegangen. Die Umsetzbarkeit des vorgestellten Verfahrens wird am Beispiel der Notbremssituation gezeigt. Die Notbremssituation setzt sich aus unterschiedlichen Teilsituationen und Manövern zusammen. Die Erkennung der einzelnen Situationen und Manöver sowie die Zusammenführung zur übergeordneten Notbremssituation wurden mit Hilfe des vorgestellten Verfahrens realisiert. Zur Evaluierung der Erkennungsgüte wurden sowohl Messdaten aus dem Straßenverkehr als auch realitätsnahe Daten, aufgezeichnet auf Versuchsstrecken, herangezogen. / The present work describes a generic method for the probabilistic identification of driving situations and driving manoeuvres for safety relevant driver assistance systems. Driving situations and driving manoeuvres underlie a certain uncertainty based on the different situation perception and manoeuvre execution of the driver. This uncertainty component is considered in the approach for the situation and manoeuvre identification. An additional uncertainty aspect is based on the inaccurate environment information, the identification of driving situations and manoeuvres depend on. Both uncertainty aspects are completely independent and are considered and modelled separately for this reason. For modelling both of these uncertainty aspects the present approach is using the fuzzy theory, probabilistic networks, as well as methods for error propagation and sensitivity analysis. After introducing these techniques theoretically, the application and the interaction of the single methods to identify the driving situations and manoeuvres is described in detail. The practicability of the introduced proceeding is shown exemplarily on the emergency brake situation. The emergency brake situation consists of several situation and manoeuvre components. The identification of the single situations and manoeuvres as well as the combination to the higher emergency brake situation is realised with the introduced proceeding. Measuring data gathered on road traffic and close to reality data measured on a test track were used to evaluate the identification quality.

Page generated in 0.0247 seconds