Spelling suggestions: "subject:"gödel, hurt"" "subject:"gödel, kurt""
1 |
Les limitations imposées par le théorème de Gödel aux machines pensantesBrunet, Alexandre January 2001 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Remarks on formalized arithmetic and subsystems thereofBrink, C January 1975 (has links)
In a famous paper of 1931, Gödel proved that any formalization of elementary Arithmetic is incomplete, in the sense that it contains statements which are neither provable nor disprovable. Some two years before this, Presburger proved that a mutilated system of Arithmetic, employing only addition but not multiplication, is complete. This essay is partly an exposition of a system such as Presburger's, and partly an attempt to gain insight into the source of the incompleteness of Arithmetic, by linking Presburger's result with Gödel's.
|
3 |
Estudo sobre a Demonstração do segundo teorema de incompletude de GödelEstivalet, Manuel Bauer January 2012 (has links)
A presente dissertação consiste em um estudo de apresentações da demonstração do Segundo Teorema de Incompletude de Gödel. Considera, com especial atenção, aquelas feitas por Shoefield no Mathematical Logic e por Hilbert e Bernays no Grundlagen der Mathematik. Como resultado, obtém-se uma análise das condições de derivabilidade e considerações sobre como é possível demonstrá-las.
|
4 |
Estudo sobre a Demonstração do segundo teorema de incompletude de GödelEstivalet, Manuel Bauer January 2012 (has links)
A presente dissertação consiste em um estudo de apresentações da demonstração do Segundo Teorema de Incompletude de Gödel. Considera, com especial atenção, aquelas feitas por Shoefield no Mathematical Logic e por Hilbert e Bernays no Grundlagen der Mathematik. Como resultado, obtém-se uma análise das condições de derivabilidade e considerações sobre como é possível demonstrá-las.
|
5 |
Estudo sobre a Demonstração do segundo teorema de incompletude de GödelEstivalet, Manuel Bauer January 2012 (has links)
A presente dissertação consiste em um estudo de apresentações da demonstração do Segundo Teorema de Incompletude de Gödel. Considera, com especial atenção, aquelas feitas por Shoefield no Mathematical Logic e por Hilbert e Bernays no Grundlagen der Mathematik. Como resultado, obtém-se uma análise das condições de derivabilidade e considerações sobre como é possível demonstrá-las.
|
Page generated in 0.0595 seconds