• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 153
  • 46
  • 16
  • 12
  • 8
  • 8
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • Tagged with
  • 302
  • 302
  • 302
  • 190
  • 151
  • 59
  • 52
  • 51
  • 41
  • 40
  • 40
  • 39
  • 39
  • 38
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Modulation orthostérique et allostérique du PAFR par des molécules synthétiques

Noël, Cynthia Jenny January 2008 (has links)
Le PAF (facteur d'activation des plaquettes) est un médiateur lipidique de l'inflammation très puissant impliqué dans plusieurs conditions pathophysiologiques.Le PAF agit principalement via un seul récepteur, le PAFR qui appartient à la famille des récepteurs couplés aux protéines G, les GPCRs. Le"two state model" assume que les GPCRs existent dans un état d'équilibre entre un état inactif (R) et un état actif (R*). L'isomérisation de R vers R* peut arriver de façon spontanée, c'est à dire indépendamment de la liaison d'un agoniste. Dans ces travaux de recherche, nous avons tenté de déterminer la propriété antagoniste et agoniste inverse des molécules orthostériques (WEB2086, PCA4248, FR49175, bromure d'octylonium, CV3988 et le Trans BTP dioxolane) à activer la voie des MAPK ainsi que le cycle biochimique des inositols phosphates dans la lignée cellulaire HEK 293 transfectée de façon stable avec le récepteur du PAF. De plus, l'activité potentiellement allostérique sur le PAFR de modulateurs synthétiques tels le THG-315, le THG-316 et MAREK a également été investiguée dans la même lignée cellulaire. Finalement, des surnageants d'hybridome 9H1/1C1, 9F5/1H4, 9F5/1H4, 9F5/1F8, 9F5/2B3 et 9F5/2E4 contenant des anticorps monoclonaux, dirigés tous contre un peptide qui équivaut à la région C-terminale de la troisième boucle extracellulaire du PAFR: GFQDSKfHQA ont également été utilisés, afin : (1) de déterminer le meilleur clone en terme d'affinité et de spécificité et (2) effectuer des tests pour savoir s'ils possèdent des propriétés agonistes ou antagonistes sur le PAFR. En conclusion, les résultats obtenus nous indiquent que : (1) l'efficacité des molécules orthostériques à antagoniser les réponses induites par le PAF dépend de leur nature et de leur concentration, (2) les modulateurs potentiellement allostériques utilisés ne modulent aucune des voies majoritairement connues pour être activées par le PAFR, et (3) qu'il n'y a aucun marquage spécifique du PAFR avec les surnageants d'hybridomes utilisés.
112

The Role of the Central Region of the Third Intracellular Loop of D1-Class Receptors in Signalling

Charrette, Andrew 17 July 2012 (has links)
The D1-class receptors (D1R, D5R) each possess distinct signaling characteristics; however, pharmacological selectivity between them remains elusive. The third intracellular loops (IL3) of D1R and D5R harbour divergent residues that may contribute to their individual signalling phenotypes. Here we probe the function of central region of IL3 of D1R and D5R using deletion mutagenesis. Radioligand binding and whole cell cAMP assays suggest that the N-terminal and C-terminal moieties of the central IL3 oppositely contribute to the constitutive and agonist-dependant activity of D1-Class receptors. Whereas the N-terminal deletions ablated constitutive activity and decreased DA-induced activation, C-terminal deletions induced robust increases. These data, interpreted in concert with structural predictions generated from homology modeling implicate the central IL3 as playing an important role in the activation and subtype-specific characteristics of the D1-class receptors. This study may serve as a basis for the development of novel drugs targeting the central IL3 region.
113

Biophysical and magnetic resonance studies of membrane proteins

Orwick, Marcella Christine January 2011 (has links)
Bacteriorhodopsin (bR) is a 7TM membrane protein expressed in Halobacterium salinarum. Due to its stability and high expression levels, bR serves as a model for other 7TM membrane proteins. Neurotensin receptor 1 (NTS1) is a member of pharmacologically relevant G protein-coupled receptor superfamily, and is the high affinity receptor for neurotensin, a 13mer peptide that can be found in the brain, gut, and central nervous system. NTS1 is a target for Parkinson’s, Schizophrenia, and drug addiction. This thesis aims to develop pulsed magnetic resonance techniques and sample preparation forms for high resolution structural studies on 7TM proteins. In this thesis, pulsed dipolar distance electron paramagnetic resonance (EPR) methods for the study of proteins in their native membrane are established. bR is spin-labeled, and a wellresolved distance distribution is measured in excellent agreement with other structural data. Preliminary distance data for a photoexcited state of bR suggests quaternary rearrangements in the native membrane that are agreement with published AFM results. A fitting method is developed to enable measurements of systems with rapid signal decay, a common feature in reconstituted systems studied by pulsed EPR methods. A physical chemical characterization of nanosized-bilayer discs termed Lipodisqs®, and the successful incorporation of bR is presented. Lipodisqs® are formed from DMPC and a polymer that is able to solubilize DMPC vesicles into discrete particles. Lipodisqs® possess a broad phase transition with increased lipid ordering compared to a DMPC dispersion. The SMA polymer interacts with the lipid tails, but does not perturb the headgroup. BR is incorporated in the monomeric form, and EPR dynamic and distance measurements confirm that Lipodisqs® preserve the native structure of bR, whilst detergent solubilisation increases the overall mobility compared to bR in its native membrane, suggesting that Lipodisqs® serve as an excellent medium for EPR studies on 7TM membrane proteins. A cysteine-depleted mutant of active, ligand binding NTS1 is constructed. Cysteines are reintroduced at positions that may be able to monitor agonist and inverse-agonist induced conformational and dynamic changes. A spin-labeling protocol is developed, and preliminary EPR measurements are discussed. Dynamic nuclear polarization (DNP) results are presented with uniformly-<sup>13</sup>C-labelled bR in the PM, resulting in a DNP enhancement of 16 using the biradical nitroxide polarizing agent, TOTAPOL. DNP-enhanced solid state NMR (ssNMR) is typically carried out at cryogenic temperatures, resulting in poor spectral resolution compared to ambient temperatures. Two different forms of samples are prepared that could potentially lead to better-resolved DNP spectra. BR is reverse labelled by adding natural abundance amino acids to isotopically labelled growth medium, resulting in the partial depletion of resonance signals that may obscure and crowd the NMR spectra. A crystalline sample of bR is prepared using the LCP method for crystallization, which is to date the most successful method for the crystallization of GPCRs. In summary, the first pulsed dipolar measurements of a protein in its native membrane are shown, Lipodisqs® are characterized and found to be a suitable medium for structural and functional studies of 7 TM membrane proteins, the first preliminary EPR studies on a ligand binding GPCR are presented, and novel sample preparation techniques are developed for the nitroxide-based DNP enhancement of ssNMR data. This thesis opens up several avenues for future research into 7TM membrane proteins.
114

Multiplexed cell-based assays to profile GPCR activities and cellular signalling

Galinski, Sabrina 25 February 2016 (has links)
No description available.
115

Regulation of Pancreatic α and β Cell Function by the Bile Acid Receptor TGR5

Prasanna Kumar, Divya 01 January 2014 (has links)
The discovery that bile acids act as endogenous ligands of the membrane receptor TGR5 and the nuclear receptor FXR increased their significance as regulators of cholesterol, glucose and energy metabolism. Activation of TGR5, expressed on enteroendocrine L cells, by bile acids caused secretion of GLP-1, which stimulates insulin secretion from pancreatic β cells. Expression of TGR5 on pancreatic islet cells and the direct effect of bile acids on the endocrine functions of pancreas, however, are not fully understood. The aim of this study was to identify expression of TGR5 in pancreatic islet cells and determine the effect of bile acids on insulin secretion. Expression of TGR5 was identified by quantitative PCR and western blot in islets from human and mouse, and in α (αTC1-6) and β (MIN6) cells. Release of insulin, glucagon and GLP-1 were measured by ELISA. The signaling pathways coupled to TGR5 activation were identified by direct measurements such as stimulation of G proteins, adenylyl cyclase activity, PI hydrolysis and intracellular Ca2+ in response to bile acids; and confirmed by the use of selective inhibitors that block specific steps in the signaling pathway. Our studies identified expression of TGR5 receptors in β cells and demonstrated that activation of these receptors by both pharmacological ligands (oleanolic acid (OA) and INT-777) and physiological ligand (lithocholic acid, LCA) induced insulin secretion. TGR5 receptors are also expressed in α cells and, activation of TGR5 by OA, INT-777 and LCA at 5 mM glucose induced release of glucagon, which is processed from proglucagon by the selective expression of prohormone convertase 2 (PC2). However, under hyperglycemia, activation of TGR5 in α cells augmented the glucose-induced increase in GLP-1 secretion, which in turn, stimulated insulin secretion. Secretion of GLP-1 from α cells reflected TGR5-mediated increase in PC1 promoter activity and PC1 expression, which selectively converts proglucagon to GLP-1. The signaling pathway activated by TGR5 to mediate insulin and GLP-1 secretion involved Gs/cAMP/Epac/PLC-ε/Ca2+. These results provide insights into the mechanisms involved in the regulation of pancreatic α and β cell function by bile acids and may lead to new therapeutic avenues for the treatment of diabetes.
116

PHARMACOLOGICAL IMPLICATIONS OF ADENOSINE 2A RECEPTOR- DOPAMINE TYPE 2 RECEPTOR HETEROMERIZATION

Hatcher-Solis, Candice N 01 January 2016 (has links)
G protein-coupled receptors (GPCRs) are heptahelical, transmembrane proteins that mediate a plethora of physiological functions by binding ligands and releasing G proteins that interact with downstream effectors. GPCRs signal as monomers, complexes of the same receptor subtype (homomers), or complexes of different receptor subtypes (heteromers). Recently, heteromeric GPCR complexes have become attractive targets for drug development since they exhibit distinct signaling and cell-specific localization from their homomeric counterparts. Yet, the effect of heteromerization on the pharmacology of many GPCR homomers remains unknown. Therefore, we have undertaken the task to examine the effect of heteromerization on Gs signaling through the adenosine 2A receptor (A2AR) and Gi signaling through the dopamine type 2 receptor (D2R) since the A2AR-D2R heteromer is an emerging therapeutic target for Parkinson’s disease (PD). We examined the effect of heteromerization on A2AR and D2R homomeric signaling using electrophysiology and the Xenopus laevis oocyte heterologous expression system. G protein-coupled inwardly rectifying potassium channels (GIRKs) were used as reporters for Gi signaling because activation leads to direct Gbeta-gamma (Gβγ)-mediated stimulation of the GIRK current. We also coupled GIRK channels to Gs signaling by overexpressing Gαs and signaling throughGαsβγ. Our electrophysiological assay is innovative because it allows us to optimize the conditions of heteromerization and directly observe GPCR signaling at the G protein level. Our data demonstrate that heteromer formation alone decreases dopamine-elicited Gi signaling through the D2R and CGS-21680-elicited Gs signaling through the A2AR. Furthermore, this reciprocal antagonism was predominately due to changes in efficacy versus potency. We also examined crosstalk observing that applying agonists or antagonists to the adjacent receptor further modulate this inhibition with the combination of agonists and antagonists relieving inhibition. Mutating the A2AR-D2R heteromer interface abrogated all of the aforementioned ligand-induced effects on G protein signaling through the A2AR-D2R heteromer. We are currently aiming to validate our results from the oocyte experiments with an in vivo model. Our data further elucidate the effect of various ligands on G protein signaling through the A2AR- D2R heteromer, which may facilitate future studies that examine A2AR-D2R heteromer signaling.
117

Úloha receptorů spřažených s Gq proteiny v hnědých adipocytech / Role of Gq-coupled receptors in brown adipocytes

Čajková, Michaela January 2015 (has links)
Charles university in Prague, Pharmaceutical faculty in Hradci Králové, Department of biological and medical sciences Rheinische Friedrich-Wilhelms-University Bonn, Institute of Pharmacology and Toxicology Candidate: Michaela Čajková Supervisor: PharmDr. Miroslav Kovařík, Ph.D. Consultant: Dr. Linda Sarah Hoffmann Title of diploma thesis: Role of Gq-coupled receptors in brown adipocytes In my diploma thesis, we focused on four Gq-coupled receptors (F2R, LPHN1, α1DAR, TSHR) in brown adipocytes (BAs), which were identified in the screen as the highest expressed in immature and mature BAs. Our goal was to validate suggestion, that Thyroid stimulating hormone receptor (TSHR) plays a key role in differentiation of BAs and that F2R, LPHN1, α1D-AR might be important for BAs. In our study, we investigated gene expression of these four receptors in BAs, using analytical methodsquantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and Western blot. Results from analysis revealed, that expression of TSHR was increased in mature BAs, it means, that TSHR induce differentiation of BAs. The BAs transduced with short hairpin RNA (sh-RNA) against TSHR were less differentiated, this we proved also with Oil Red-O staining. Expression of adipocyte Protein 2 (aP2), peroxisome proliferator-activated...
118

New C-C chemokine receptor type 7 antagonists

Ahmed, Mohaned S. A. January 2016 (has links)
Chemokines are chemotactic cytokines which play an important role in the migration of immune cells to distant tissues or compartments within tissues. These proteins have also been demonstrated to play a major role in cancer metastasis. The C-C chemokine receptor type 7 (CCR7) is a member of the chemokine receptor family. CCR7 along with its ligands CCL19 and CCL21 plays an important role in innate immune response by trafficking of lymphocytes. In cancer, tumour cells expressing CCR7 migrate to lymphoid organs and thus disseminate to other organs. Neutralizing the interactions between CCL21/CCR7 would therefore be expected to inhibit the progression and metastasis of many different types of cancer to regional lymph nodes or distant organs. Our objective was to identify a potent small molecule antagonist of CCR7 as a prelude to the investigation of the role of this axis in cancer metastasis. In this study, we provided a brief description of chemokines and their role in health and disease with an emphasis on the CCR7/CCL19/CCL21 axis, as well as identification of a CCR7 antagonist “hit”. The potency of the CCR7 antagonist “hit” was optimised by synthesizing different CCR7 antagonist analogues. The “hit” optimization process has led to discover the most active compound amongst a series of different analogues which have the ability to bind and block CCR7 receptor. The efficacy of the most active compound and other analogues were evaluated in vitro using a calcium flux assay which is based on detecting fluorescent light emitted upon release of calcium ions. To identify a suitable cell line, which expresses CCR7 and capably respond to it, amongst a panel of cell lines for in vitro assessment of potency of synthesised compounds, we used Western blot assay and later by flow cytometry assay. The activity and selectivity of the most effective compound against CCR7 receptor was evaluated in vitro by other functional assays such as “configured agarose spot assay” and scratch assay. We first configured the existing under agarose assay to fulfil our requirements and then used it to assess activity and selectivity of compounds. The configured agarose spot assay also describes the application of the agarose spot for evaluation of cells chemotactic response to multiple chemokines under identical experiment conditions.
119

Regulator of G protein signaling 6 (RGS6), a multifarious and pleiotropic modulator of G protein coupled receptor signaling in brain

Stewart, Adele Marie 01 May 2014 (has links)
Transmembrane signal transduction by ligand-activated G protein-coupled receptors (GPCRs) controls virtually every aspect of mammalian physiology, and this receptor class is the target of 40-50% of currently marketed pharmaceuticals. In addition to the clinical use of direct GPCR agonists and antagonists, it is now believed that GPCR effectors and regulators may also be viable drug targets with improved therapeutic efficacy and specificity. The prototypic role of Regulator of G protein Signaling (RGS) proteins is inhibition of G protein signaling through acceleration of GTP hydrolysis by GΑ, which promotes re-association of GΑ and GΒΓ subunits with the receptor at the cell membrane. In this way, RGS proteins determine the magnitude and duration of the cellular response to GPCR stimulation. Though RGS protein biochemistry has been well elucidated in vitro, the physiological functions of each RGS family member remain largely unexplored. RGS6 belongs to the R7 subfamily of RGS proteins originally identified in brain. Our acquisition of an RGS6-/- mouse allowed us to survey RGS6 expression in all tissues of the body revealing the greatest expression of RGS6 in brain. Despite robust neural RGS6 expression, little is known regarding functional roles of RGS6 in the brain and spinal cord. In addition, we identified several novel, higher molecular weight RGS6 immunoreactive bands specifically present in the nervous system. The plan of this thesis work was multifaceted. We sought to elucidate novel GPCR signaling cascades modulated by RGS6 in brain while simultaneously characterizing the expression patterns and identity of the novel RGS6 species specifically detected in the nervous system. Considering the large diversity of RGS6 isoforms present in brain, the abundance of potential RGS6 binding partners, and the possibility of discovering new mechanisms involved in RGS6 regulation, elucidation of the novel RGS6 molecular species is of paramount importance. Utilizing RGS6-/- mice we identified RGS6 as a critical modulator of two GPCRs in brain. First, by inhibiting the serotonin receptor 1A (5-HT1AR)-adenylyl cyclase (AC) axis, RGS6 functions to promote anxiety- and depression-related behaviors in mice. As a result, RGS6-/- mice exhibit a robust anxiolytic and antidepressant phenotype remarkably similar to that of animals treated chronically with therapeutic doses of selective serotonin reuptake inhibitors (SSRIs). RGS6 also inhibits GABAB receptor (GABABR)-G protein- activated inwardly rectifying potassium (GIRK) channel current in cerebellar granule cells, and loss of RGS6 results in cerebellar ataxia and gait abnormalities reversible by GABABR blockade. Furthermore, evaluation of voluntary alcohol drinking behaviors in WT versus RGS6-/- mice revealed a striking reduction in alcohol intake resulting from RGS6 loss in both acute and chronic alcohol consumption paradigms due, at least in part, to potentiation of GABABR signaling. Thus, RGS6 inhibitors have potential clinical utility in the treatment of mood disorders and alcoholism. We have shown that one novel RGS6 immunoreactive band expressed in the brain and spinal cord is a phospho-protein sensitive to Λ phosphatase-mediated dephosphorylation. Further, new information acquired from PCR amplification of RGS6 mRNA species from human brain cDNA libraries has necessitated substantial revisions to the RGS6 splicing scheme devised by the Fisher laboratory in 2003. To the 36 isoforms generated from two alternate transcription start sites (RGS6L vs. RGS6), the inclusion or exclusion of exons 14 and 17, and variable splicing to one of 7 different 3' terminal exons, we have added the possible insertion of three novel internal exons (A1, A2, A3), a retained intron, and two new 3' terminal exons. As a result, the number of RGS6 mRNAs present in brain could be as many as 248 unique species, an astonishing diversity unprecedented in the RGS protein family.
120

Investigation on Pre- and Postsynaptic Ca<sup>2+ </sup>Signaling in Neuronal Model Systems

Krjukova, Jelena January 2004 (has links)
<p>Communication between neuronal and non-neuronal is called volume transmission when the released neurotransmitter (NT) acts via diffusion and affects several target cells. Both the neurosecretory and postsynaptic cell responses are linked to [Ca<sup>2+</sup>]<sub>i</sub> elevations. </p><p>In the present thesis the role of pre-and postsynaptic Ca<sup>2+</sup> elevations has been investigated in the reconstituted "synapse" model comprised of NGF-differentiated PC12 and HEL cells as well as in SH-SY5Y neuroblastoma cells. In PC12 cells, both 70mM K<sup>+</sup> and nicotine triggered NT release, which could be detected as a secondary [Ca<sup>2+</sup>]<sub>i</sub> increase in surrounding HEL cells. Both secretagogues shared the same voltage-dependent Ca<sup>2+</sup> influx pathway as judged from the pharmacological profile blockers of voltage-gated Ca<sup>2+</sup> channels. The coupling of electrical responses to the activation of Ca<sup>2+</sup> signaling via muscarinic receptors in SH-SY5Y cells was also studied. These data revealed that depolarization caused a considerable potentiation of the muscarinic Ca<sup>2+</sup> response. The potentiated Ca<sup>2+</sup> increase was mainly dependent on the enhanced Ca<sup>2+</sup> influx and to a lesser extent on [Ca<sup>2+</sup>]<sub>i</sub> release from intracellular stores. A phospholipase C (PLC) activator, m-3M3FBS was used to further study the role of G-protein coupled receptor (GPCR)-coupled Ca<sup>2+</sup> signaling. However, it was found that m-3M3FBS instead triggered [Ca<sup>2+</sup>]<sub>i</sub> elevations independently of PLC activation. </p><p>In conclusion, the results indicate that the magnitude of NT release from PC12 cells is sufficient to cause a robust activation of neighboring target cells. Postsynaptic muscarinic signaling is amplified due to integration of electrical excitation and GPCR signaling. The PLC activator, m-3M3FBS is not suitable for studies of PLC-mediated signals in intact cells.</p>

Page generated in 0.0468 seconds