• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 153
  • 46
  • 16
  • 12
  • 8
  • 8
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • Tagged with
  • 302
  • 302
  • 302
  • 190
  • 151
  • 59
  • 52
  • 51
  • 41
  • 40
  • 40
  • 39
  • 39
  • 38
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Ultra-Low Dose Antagonist Effects on Cannabinoids and Opioids in Models of Pain: Is Less More?

Paquette, Jay J. 08 November 2007 (has links)
An ultra-low dose of a drug is approximately 1000-fold lower than the dose range traditionally used to induce a therapeutic effect. The purpose of the present thesis was to broaden the knowledge of the ultra-low dose effect, that was previously identified in the opioid receptor system, by looking at whether opioids and cannabinoids interact at the ultra-low dose level, whether cannabinoid receptors themselves demonstrate the ultra-low dose antagonist effect, and whether the opioid ultra-low dose effect is maintained in a model of persistent, unavoidable pain. For experiment 1, separate groups of Long Evans rats were tested for antinociception following an injection of vehicle, the cannabinoid agonist WIN 55 212-2 (WIN), the opioid antagonist naltrexone (an ultra-low or a high dose), or a combination of WIN and naltrexone doses. Ultra-low dose naltrexone elevated WIN-induced tail flick thresholds without extending its duration of action. In experiment 2, antinociception was tested in rats following either acute or sub-chronic (7 days) injections of vehicle, WIN, ultra-low doses of the CB1 receptor antagonist rimonabant (SR 141716), or a combination of WIN and ultra-low dose rimonabant. Following the chronic experiment, striatal tissue was rapidly extracted and subjected to co-immunoprecipitation to analyse CB1 receptor coupling to G-protein subtypes. Ultra-low dose rimonabant extended the duration of WIN-induced antinociception, and attenuated the development of WIN-induced tolerance. Animals chronically treated with WIN alone had CB1 receptors predominately coupling to Gs proteins, whereas all other groups had CB1 receptors predominately coupling to Gi proteins. For experiment 3, all animals were subjected to the formalin test following either acute or sub-chronic injections of vehicle, the opiate morphine, ultra-low doses naltrexone, or a combination of morphine and ultra-low dose naltrexone. Ultra-low dose naltrexone had no significant effect on morphine-induced pain ratings in either the acute, or sub-chronic drug treatments. This thesis provides evidence that the ultra-low dose effect, including the agonist-induced G-protein coupling switch, extends to another receptor type. This effect may, therefore, be part of a generalized principle that applies to many G-protein coupled receptors. / Thesis (Ph.D, Psychology) -- Queen's University, 2007-11-05 09:31:30.162 / A portion of this research was supported by a Canadian Institutes of Health Research (CIHR) Proof of Principle Grant to M.C. Olmstead and J.J. Paquette.
132

Identifying signaling differences between GPCR-induced growth factor receptor transactivation and direct ligand activation

Kouchmeshky, Azita 14 March 2014 (has links)
Growth factor receptors have significant effects on various normal function of body such as cell proliferation, differentiation and apoptosis. They are also involved in neuronal function and dysfunction, cardiovascular diseases, and malignancies. Recently, multiple G protein-coupled receptors (GPCRs) have been shown to transactivate receptor tyrosine kinases (RTKs). Since both classes of receptors have complicated downstream cascades individually, understanding the signaling differences between GPCR-induced growth factor receptor transactivation and direct ligand activation is an important challenge. To clarifying this phenomenon we investigated the phosphorylation profile and downstream effectors of ligand-activated vs. transactivated PDGF?? receptors. Dopamine receptors (one of the receptors of the GPCRs family) were used to compare the PDGF?? receptor phosphorylation and activity during direct activation and transactivation. Dose-response and time-course data between these two stimuli were evaluated. Furthermore, the phosphorylation site profiles and the intracellular signaling pathways of PDGF?? receptor after direct activation and transactivation were examined. In addition, possible synergic effects between transactivation and direct activation were explored. The results of this project showed that the phosphorylation profile and downstream effectors of ligand activated receptors versus transactivated receptors are different. Our data indicated that transactivation-induced pathways are more involved in survival and proliferation effects compared to ligand activation. This research answered basic questions about transactivation phenomena and proposes that these transactivation pathways could be exploited as a therapeutic approach for neurodegenerative diseases.
133

The mechanism of G protein coupled receptor activation: the serotonin receptors

Sallander, Eva Jessica 04 July 2011 (has links)
Una de las principales cuestiones en farmacología molecular de los GPCR es entender los mecanismos estructurales de las siete hélices transmembrana (TM) que se producen para estabilizar ya sea Rg o los diferentes estados R*. Para entender el mecanismo que cambia el equilibrio del conjunto a un estado activo R* se construyeron tres de los receptores de la serotonina (5-HT4, 5-HT6, y 5 HT7) sobre la base de su información más reciente de cristalografía de rayos X. Dando lugar a dos modelos de cada receptor: una inactiva y otra activa. Los modelos, mejorados y evaluados con la ayuda de datos farmacológicos y químicos se utilizaron principalmente para comprender la interacción entre un ligando y su receptor y su mecanismo de acción. Estos hallazgos estructurales pueden a su vez resultar útiles para el diseño de nuevos fármacos más eficaces y selectivos. / One of the main questions in G protein coupled receptors (GPCRs) molecular pharmacology is to understand the structural arrangements of the seven transmembrane (TM) helices that occur to stabilize either the ground state (Rg) or different active states (R*) of the receptors. In order to understand the mechanism that shift the equilibrium of the ensemble to an active R* state models of the inactive and the active state of three serotonin receptors (5-HT4, 5-HT6, and 5-HT7) were built based on the latest information from X-ray crystallography. The resulting models were mainly used to understand the interaction between a ligand and its receptor and the mechanism of action. With the help of pharmacological and chemical data these models and complexes were improved and evaluated. These findings may prove valuable for structural based drug discovery efforts and facilitate the design of more effective and selective pharmaceuticals.
134

Assay and array technologies for G-protein coupled receptors.

Bailey, Kelly January 2009 (has links)
The overall aim of this thesis is to investigate strategies to aid in the measurement of G-protein coupled receptor (GPCR) activity for high-throughput screening and sensing applications. GPCRs are cell surface receptors which have seven membrane spanning domains. They are the largest family of membrane proteins in the human genome and are involved in a number of physiological and pathophysiological pathways. They are the most widely targeted protein family for therapeutics being the target for over 30% of the currently available prescription drugs (Jacoby et al. 2006). For this reason commercial interest and investment into compound screening using these receptors as targets is of high importance in lead drug discovery. Additionally, the extensive ligand range of the GPCR superfamily, which includes light, odorants/ volatiles, neurotransmitters and hormones, make them an attractive biological recognition element in biosensor applications. This thesis demonstrates the functional expression of the H1-histamine, M2-muscarinic and α₂ₐ-adrenergic receptors of the G-protein coupled receptor family, along with their associated G-proteins (Gα, Gβ and Gγ). Expression was achieved using the Sf9/baculovirus expression system. The G-proteins were successfully incorporated into an assay system using time-resolved fluorescence resonance energy transfer (TRFRET). TR-FRET was used in order to create a homogeneous assay format capable of monitoring GPCR activation through the movement of the G-protein subunits. Fluorescence changes in the TR-FRET assay indicated a change in distance between the Gα subunit and Gβγ dimer. The separation of the Gα subunit and the Gβγ dimer after activation resulted in a significant decrease in TR-FRET measurement. The homogeneous set-up of the TR-FRET assay could potentially be adaptable to an array based format. This thesis describes the capture of vesicles containing functional GPCRs onto a solid substrate via the specific interaction between complementary oligonucleotides. GPCR presence and function within the immobilized vesicles, was demonstrated using fluorescent ligands. Further to this, alternative lipid hosts (to the vesicles), known as cubosomes, were introduced. When tagged with an oligonucleotide, these cubosome particles were also shown to immobilize site specifically onto a complementary oligonucleotide surface. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1369537 / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 2009
135

Assay and array technologies for G-protein coupled receptors.

Bailey, Kelly January 2009 (has links)
The overall aim of this thesis is to investigate strategies to aid in the measurement of G-protein coupled receptor (GPCR) activity for high-throughput screening and sensing applications. GPCRs are cell surface receptors which have seven membrane spanning domains. They are the largest family of membrane proteins in the human genome and are involved in a number of physiological and pathophysiological pathways. They are the most widely targeted protein family for therapeutics being the target for over 30% of the currently available prescription drugs (Jacoby et al. 2006). For this reason commercial interest and investment into compound screening using these receptors as targets is of high importance in lead drug discovery. Additionally, the extensive ligand range of the GPCR superfamily, which includes light, odorants/ volatiles, neurotransmitters and hormones, make them an attractive biological recognition element in biosensor applications. This thesis demonstrates the functional expression of the H1-histamine, M2-muscarinic and α₂ₐ-adrenergic receptors of the G-protein coupled receptor family, along with their associated G-proteins (Gα, Gβ and Gγ). Expression was achieved using the Sf9/baculovirus expression system. The G-proteins were successfully incorporated into an assay system using time-resolved fluorescence resonance energy transfer (TRFRET). TR-FRET was used in order to create a homogeneous assay format capable of monitoring GPCR activation through the movement of the G-protein subunits. Fluorescence changes in the TR-FRET assay indicated a change in distance between the Gα subunit and Gβγ dimer. The separation of the Gα subunit and the Gβγ dimer after activation resulted in a significant decrease in TR-FRET measurement. The homogeneous set-up of the TR-FRET assay could potentially be adaptable to an array based format. This thesis describes the capture of vesicles containing functional GPCRs onto a solid substrate via the specific interaction between complementary oligonucleotides. GPCR presence and function within the immobilized vesicles, was demonstrated using fluorescent ligands. Further to this, alternative lipid hosts (to the vesicles), known as cubosomes, were introduced. When tagged with an oligonucleotide, these cubosome particles were also shown to immobilize site specifically onto a complementary oligonucleotide surface. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1369537 / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 2009
136

Assay and array technologies for G-protein coupled receptors.

Bailey, Kelly January 2009 (has links)
The overall aim of this thesis is to investigate strategies to aid in the measurement of G-protein coupled receptor (GPCR) activity for high-throughput screening and sensing applications. GPCRs are cell surface receptors which have seven membrane spanning domains. They are the largest family of membrane proteins in the human genome and are involved in a number of physiological and pathophysiological pathways. They are the most widely targeted protein family for therapeutics being the target for over 30% of the currently available prescription drugs (Jacoby et al. 2006). For this reason commercial interest and investment into compound screening using these receptors as targets is of high importance in lead drug discovery. Additionally, the extensive ligand range of the GPCR superfamily, which includes light, odorants/ volatiles, neurotransmitters and hormones, make them an attractive biological recognition element in biosensor applications. This thesis demonstrates the functional expression of the H1-histamine, M2-muscarinic and α₂ₐ-adrenergic receptors of the G-protein coupled receptor family, along with their associated G-proteins (Gα, Gβ and Gγ). Expression was achieved using the Sf9/baculovirus expression system. The G-proteins were successfully incorporated into an assay system using time-resolved fluorescence resonance energy transfer (TRFRET). TR-FRET was used in order to create a homogeneous assay format capable of monitoring GPCR activation through the movement of the G-protein subunits. Fluorescence changes in the TR-FRET assay indicated a change in distance between the Gα subunit and Gβγ dimer. The separation of the Gα subunit and the Gβγ dimer after activation resulted in a significant decrease in TR-FRET measurement. The homogeneous set-up of the TR-FRET assay could potentially be adaptable to an array based format. This thesis describes the capture of vesicles containing functional GPCRs onto a solid substrate via the specific interaction between complementary oligonucleotides. GPCR presence and function within the immobilized vesicles, was demonstrated using fluorescent ligands. Further to this, alternative lipid hosts (to the vesicles), known as cubosomes, were introduced. When tagged with an oligonucleotide, these cubosome particles were also shown to immobilize site specifically onto a complementary oligonucleotide surface. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1369537 / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 2009
137

Role of TRIP6 in LPA-induced cell migration

Lai, Yun-Ju. January 2007 (has links) (PDF)
Thesis (Ph.D.)--University of Alabama at Birmingham, 2007. / Title from first page of PDF file (viewed on June 25, 2009). Includes bibliographical references.
138

The regulation of G protein-coupled receptor (GPCR) signal transduction by p90 Ribosomal S6 Kinase 2 (RSK2) /

Sheffler, Douglas James. January 2006 (has links)
Thesis (Ph. D.)--Case Western Reserve University, 2006. / [School of Medicine] Department of Biochemistry. Includes bibliographical references. Available online via OhioLINK's ETD Center.
139

Photoreceptor cell fate determination and rhodopsin expression in the developing eye of Drosophila /

Birkholz, Denise A. January 2005 (has links)
Thesis (Ph.D. in Cell and Developmental Biology) -- University of Colorado at Denver and Health Sciences Center, 2005. / Typescript. Includes bibliographical references (leaves 139-155).
140

Oligomerization and Endocytosis of the α-Factor Receptor: A Dissertation

Yesilaltay, Ayce 01 September 2001 (has links)
α-Factor receptors from Saccharomyces cerevisiae are G-protein-coupled receptors containing seven transmembrane segments. The ability of α-factor receptors to form oligomeric complexes with each other and with other proteins was investigated. Both in vivo and in vitroevidence was obtained that suggests homo-oligomerization of receptors in the plasma membrane. When the membranes from cells coexpressing two differentially-tagged receptors were solubilized with detergent and subjected to immunoprecipitation, the antibodies specific for either epitope tag resulted in precipitation of both tagged species. Treatment of cultures with α-factor had little effect on the extent of oligomerization as judged by the sedimentation behavior of the receptor complexes and by the efficiency of coimmunoprecipitation. The ability of receptor complexes to undergo ligand-mediated endocytosis was evaluated by using membrane fractionation and fluorescence microscopy. Mutant receptors that fail to bind α-factor (Ste2-S184R) or lack the endocytosis signal (Ste2-T326) became competent for ligand-mediated endocytosis when they were expressed in cells containing wild-type receptors. Coimmunoprecipitation experiments indicated that the C-terminal cytoplasmic domain and intermolecular disulfide bonds were unnecessary for oligomer formation. Therefore, α-factor receptors form homo-oligomers and that these complexes are subject to ligand-mediated endocytosis. A crosslinking and immunoprecipitation strategy was used to capture and characterize the transient complexes that contain the α-factor receptor Ste2. Tagged receptors were crosslinked to form at least three high molecular weight complexes and the complexes were immunoprecipitated with antibodies against the tag. Western blotting analysis of the precipitated material revealed the presence of β and γ subunits of the heterotrimeric G protein, Ste4 and Stel8. Similar results were obtained when the cultures had been treated with α-factor prior to analysis. A truncated receptor missing most of the cytoplasmic C-terminal tail was also active in binding Ste4. Overall, these results constitute the first biochemical evidence for a physical association between the α-factor receptor and its cognate G-protein. Endocytic signals in the C-terminal tail (residues 297-431) of the α-factor receptor were analyzed. One signaling element, SINNDAKSS, (residues 331-339) is known to be sufficient (but not necessary) for endocytosis. Internal deletions of the STE2 gene were constructed that remove sequences encoding SINNDAKSS and selected regions of the C-terminal tail. Strains containing these alelles were then assayed for endocytosis in the presence and absence of α-factor. Residues from 360 to 431 were sufficient to mediate both constitutive and ligand-mediated endocytosis of the receptor even though 63 residues including the SINNDAKSS motif had been removed. Structural features of this region that were investigated further were the highly-ubiquitinated Lys374, the neighboring Lys387, and the GPFAD motif (residues 392-396). Lys374 and Lys387 were unnecessary for the element to promote exit from the plasma membrane; however, Lys374 may play some role in intracellular trafficking. The GPFAD motif was not sufficient to promote endocytosis, since the residues 360-399 provided no detectable endocytic activity. Overall, these results suggest that a new region in the C-terminal of the α-factor receptor, redundant with the SINNDAKSS motif, is sufficient to mediate the constitutive endocytosis as well as the ligand-mediated endocytosis of the receptor.

Page generated in 0.03 seconds