• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 27
  • 12
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 154
  • 154
  • 154
  • 154
  • 40
  • 27
  • 26
  • 26
  • 25
  • 22
  • 21
  • 20
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Nature and Function of the Signaling Complex Formed by the M2 Muscarinic Cholinergic Receptor

Ma, Amy Wing-Shan 05 December 2012 (has links)
G protein-coupled receptors (GPCRs) are known to exist as oligomers, but there is much uncertainty over the oligomeric size, the number of interacting G proteins and the stability of that interaction. The present approach to these questions has been threefold. Monomers of the M2 muscarinic receptor were purified from Spodoptera frugiperda (Sf9) cells and reconstituted in phospholipid vesicles, where they spontaneously formed tetramers. The size of the reconstituted complex was determined from its electrophoretic mobility after cross-linking and inferred from a quantitative, model-based assessment of cooperative effects in the binding of two muscarinic antagonists: N-methylscopolamine and quinuclidinylbenzilate. Binding of the agonist oxotremorine-M to receptor reconstituted with purified G proteins revealed at least three classes of sites that interconverted from higher to lower affinity upon the addition of guanylylimidotriphosphate (GMP-PNP). The binding properties resemble those of muscarinic receptors in myocardial preparations, thereby implying the existence of tetramers in native tissues. G proteins that copurify with the M2 receptor from cardiac membranes also were found to exist as oligomers, some of which contain both alpha(o) and alpha(i2), and the purified complexes contained receptor and G protein in near-equal amounts. A tetrameric receptor implies a tetramer of G proteins, a conclusion that is supported by the distribution of sites between different states identified in the binding of [35S]GTPgammaS to the purified complex. Covalent adducts of a GPCR fused to a Galpha-subunit provide a model system in which the relationship between receptor and G protein complex is defined with respect to stability and composition. Such a fusion of the M2 receptor and Galpha(i1) underwent a cleavage near the amino terminus of the alpha-subunit, however, flagging the likelihood of similar effects in other such adducts. Truncation of the amino terminus prior to fusion generated a stable product that revealed GMP-PNP-sensitive, biphasic binding of oxotremorine-M and noncompetitive interactions between N-methylscopolamine and quinuclidinylbenzilate. A covalent RG complex therefore exhibits the functional properties of M2 receptors in native systems. These observations are consistent with the notion that signaling through the M2 receptor occurs via cooperative interactions within a stable complex that comprises four receptors and four G proteins.
42

G Protein-Coupled Receptors; Discovery of New Human Members and Analyses of the Entire Repertoires in Human, Mouse and Rat

Gloriam, David E. January 2006 (has links)
G protein-coupled receptors (GPCRs) are signal mediators that have a prominent role in the regulation of physiological processes and they make up the targets for 30-45% of all drugs. Papers I and II describe the discovery of new human GPCRs belonging to the Rhodopsin family, a family which contains many common drug targets. The new receptors have only weak relationships to previously known GPCRs. However, they have been evolutionary conserved in several species and most of them display distinct expression patterns. In paper III we identified new human GPCRs belonging to the Adhesion family, which is characterised by very long N-termini containing conserved domains. The different compositions of conserved domains as well as the expression patterns suggest that the Adhesions can have several different functions. In paper IV we revealed remarkable species variations in the repertoires of Trace Amine-Associated Receptors (TAARs), which are relatives of the biogenic amine receptors. The human, mouse and rat TAAR genes are located in only one locus and are therefore most likely the result of gene tandem duplications. 47 of the 57 zebrafish TAARs were mapped to nine different loci on six chromosomes containing from 1 to 27 genes each. This study suggests that the TAARs arose through several different mechanisms involving tetraploidisation, block duplications, and local duplication events. Papers V and VI are overall analyses of the repertoires of GPCRs in humans, mice and rats; which contain approximately 800, 1800 and 1900 members, respectively. The repertoires were compared to distinguish between species-specific and common (orthologous) members, something which is important for example when predicting drug effects from experiments in rodents. The Glutamate, Adhesion, Frizzled and Secretin families show no or very little variation between human and rodents, whereas the repertoires of olfactory, vomeronasal and Taste2 receptors display large differences between all three species.
43

Studies of the Neuropeptide Y Receptor Y2 in Human and Zebrafish

Fällmar, Helena January 2011 (has links)
The G-protein coupled receptors (GPCRs) comprise the largest family of receptors in humans and other vertebrates. They are embedded in the cell membrane and are activated by many different signaling molecules. Activation modulates cellular signal transduction pathways and influences many physiological processes. Therefore the GPCRs are important as targets for numerous drugs. The receptors for NPY (neuropeptide Y) belong to GPCRs of Class A (rhodopsin-like). NPY and its related peptides PYY and PP are involved in the regulation of appetite, blood pressure and many other processes. They share a common structure and interact with the receptors Y1, Y2, Y4 and Y5 in mammals, and, in addition, Y7 and Y8 in amphibians and bony fishes. This thesis is focused on the human Y2 receptor, known to reduce appetite, by investigating the importance of thirteen amino acid residues for ligand binding. Mutagenesis followed by functional expression and receptor binding was conducted. During the course of this work several new GPCR crystal structures have been resolved, thereby improving the receptor modeling in papers I-III. The major finding is that even though the Y1 and Y2 receptors have evolved from a common ancestor, their points of ligand interaction differ and have thus changed during evolution. In general, the positions investigated resulted in milder changes in the ligands’ affinities for Y2 compared to Y1. These findings were incorporated in the design of new Y1 and Y2 receptor models, leading to improved understanding of how such divergent receptors, sharing only 30 percent sequence identity, can still interact with the same ligands. Notably, several of the mutations introduced in Y2 resulted in increased affinity. A novel NPY receptor gene named Y2-2 was identified in the genomes of zebrafish and medaka. This brings the number of zebrafish NPY receptors to seven. The binding characteristics of zebrafish Y2-2 differed from zebrafish Y2 mainly in the interaction with NPY13-36 and the antagonist BIIE0246. In conclusion, these results increase our understanding of ligand interactions with GPCRs and will be useful for refinement of ligand-receptor models for future development of receptor subtype-selective drugs.
44

Signaling by protease-activated receptors in gastrointestinal smooth muscle /

Sriwai, Wimolpak. January 2007 (has links)
Thesis (Ph. D.)--Virginia Commonwealth University, 2007. / Prepared for: Dept. of Physiology. Bibliography: leaves 158-171. Available online via the Internet.
45

Molekulare Charakterisierung und Identifizierung eines Aktivierungsmechanismus von Adhesion-G-Protein-gekoppelten Rezeptoren

Schön, Julia 17 December 2015 (has links) (PDF)
Die Familie der Adhesion-G-Protein-gekoppelten Rezeptoren (aGPCR) stellt die zweitgrößte Gruppe der GPCR dar. Ein strukturelles Charakteristikum der aGPCR ist der modular aufgebaute N-Terminus, welcher eine GPCR-proteolytic site (GPS) mit einem konservierten Spaltungsmotiv enthält. Trotz der hohen medizinischen Relevanz dieser Rezeptorgruppe sind für die meisten der 33 humanen Vertreter der aGPCR bis heute weder Funktion noch endogener Agonist bekannt. Um sie jedoch zukünftig als potentielle Angriffspunkte diagnostisch und therapeutisch nutzen zu können, kommt der umfassenden Charakterisierung der aGPCR hinsichtlich ihrer Aktivierungsmechanismen und Signaltransduktion große Bedeutung zu. In dieser Arbeit konnte gezeigt werden, dass eine kurze Peptidsequenz im C-terminalen Bereich des N-Terminus (Stachel-Sequenz genannt) als gebundener Agonist der aGPCR fungiert und G-Protein-vermittelte Signalwege aktiviert. Dazu wurden ortsgerichtete Mutagenesestudien durchgeführt und synthetisierte Peptide analog der Stachel-Sequenz der aGPCR in funktionellen second messenger-Akkumulationsexperimenten getestet. Während die Untersuchungen des Aktivierungsmechanismus an den bereits initial charakterisierten Rezeptoren GPR126 und GPR133 unternommen wurden, konnten 11 weitere aGPCR hinsichtlich ihrer Kopplung an G-Proteine, Expression und ihres autoproteolytischen Spaltungsverhaltens in vitro analysiert werden. Dabei ist herauszustellen, dass alle untersuchten aGPCR an das Gs-Protein koppeln. GPR115, GPR116 und GPR128 zeigten sogar eine multiple Kopplung an Gs-, Gq- und Gi-Proteine. Weiterhin konnte dargelegt werden, dass die Zerstörung hoch konservierter Disulfidbrückenbindungen innerhalb der GPS durch Aminosäuresubstitution in einer konstitutiven Aktivierung des Wildtyp-Rezeptors resultiert.
46

Développement d’essais HTRF® innovants pour détecter l'activation des protéines G natives par leurs récepteurs / Development of HTRF® assays to study G proteins

Da Silva, Mélanie 25 September 2017 (has links)
Les récepteurs couplés aux protéines G (RCPG) représentent la plus grande famille de protéines membranaires, et ils sont la cible de plus de 25% des médicaments. Ces récepteurs activent diverses voies de signalisation cellulaire via plusieurs familles de protéines G hétéro-trimériques (Gs, Gq, Gi/o et G12/13). Etant donné qu’un RCPG peut activer différentes protéines G, il est important de comprendre comment des ligands favorisent l’activation de certaines protéines G au détriment des autres (ligands biaisés). L’objectif de mon travail a été de développer de nouveaux tests pour l’étude des protéines G qui soient spécifiques d’une famille voire même de certains sous-types de protéines. / G protein-coupled receptors (GPCRs) represent the main family of membrane proteins, and they are the target of more than 25% of drugs in the market. These receptors activate various signaling pathways through different families of heterotrimeric G proteins (Gs, Gq, Gi/o et G12/13). Since a given GPCR can activate several G proteins, it is important to understand how ligands favor the activation of some of these G proteins (biased ligands). The objective of my thesis was to develop assays to study most G protein subtypes.
47

Luteinizing hormone receptor:expression and post-translational regulation of the rat receptor and its ectodomain splice variant

Apaja, P. (Pirjo) 16 November 2005 (has links)
Abstract The luteinizing hormone receptor (LHR) is a G protein-coupled receptor (GPCR) that has a large N-terminal ligand binding ectodomain. The LHR ectodomain splice variant, expressed concomitantly with the full-length LHR in tissues, has an unknown biological function. GPCRs are a major pharmacological target, however, very little is known about the intracellular regulation of these receptors. In the present work, expression and maturation of the rat LHR and its variant were elucidated using both tissues and heterologous expression systems. A special effort was made to identify the role of developmental stage and tissue type on the LHR maturation and to find out about the molecular role of the ectodomain splice variant. We found two sites of localization for the receptor, namely the sensory system and urogenital tissues. This was demonstrated at mRNA and protein level and by rat LHR promoter-driven β-galactosidase (β-Gal) expression in the mice. In neurons, the β-Gal co-localized with the cytochrome P450 side chain cleavage enzyme, which may indicate a novel role in the neurosteroid synthesis. The neuronal LHR was expressed in the mature and immature protein forms in both developing and adult tissues, being able to bind hormone with similar high-affinity as gonadal receptors. In contrast, only immature receptors were detected in the fetal rat urogenital structures. A significant novel finding was substantial upregulation of the LHR in pregnant female rat adrenal glands and kidneys at a time that coincides with the differentiation of the fetal urogenital tissues. The mice overexpressing the ectodomain splice variant showed interference in pituitary-gonadal functions and morphological changes in the urogenital tissues. The studies showed that the variant was an endoplasmic reticulum (ER)-retained soluble protein. It accumulated in juxtanuclear regions of the ER together with ER folding chaperones and was a substrate for ER associated degradation (ERAD). The co-expression of the variant with the full-length receptor decreased the amount of receptors and misrouted them to the juxtanuclear ER subcompartment. Taken together, we suggest that the maturation of the LHR protein is developmentally and physiologically regulated at the post-translational level in tissues. The LHR ectodomain splice variant possibly modulates post-translationally the number of full-length receptors through physiological signals. Our observation of the chaperone and protein accumulation into a specific ER subcompartment may represent a protein quality control holding compartment for inefficiently/misfolded ERAD substrates.
48

Norepinephrine induces internalization of Kv1.1 in hippocampal neurons

Cui, Lei 16 August 2016 (has links)
No description available.
49

Molekulare Charakterisierung und Identifizierung eines Aktivierungsmechanismus von Adhesion-G-Protein-gekoppelten Rezeptoren: Molekulare Charakterisierung und Identifizierung eines Aktivierungsmechanismus von Adhesion-G-Protein-gekoppelten Rezeptoren

Schön, Julia 24 February 2015 (has links)
Die Familie der Adhesion-G-Protein-gekoppelten Rezeptoren (aGPCR) stellt die zweitgrößte Gruppe der GPCR dar. Ein strukturelles Charakteristikum der aGPCR ist der modular aufgebaute N-Terminus, welcher eine GPCR-proteolytic site (GPS) mit einem konservierten Spaltungsmotiv enthält. Trotz der hohen medizinischen Relevanz dieser Rezeptorgruppe sind für die meisten der 33 humanen Vertreter der aGPCR bis heute weder Funktion noch endogener Agonist bekannt. Um sie jedoch zukünftig als potentielle Angriffspunkte diagnostisch und therapeutisch nutzen zu können, kommt der umfassenden Charakterisierung der aGPCR hinsichtlich ihrer Aktivierungsmechanismen und Signaltransduktion große Bedeutung zu. In dieser Arbeit konnte gezeigt werden, dass eine kurze Peptidsequenz im C-terminalen Bereich des N-Terminus (Stachel-Sequenz genannt) als gebundener Agonist der aGPCR fungiert und G-Protein-vermittelte Signalwege aktiviert. Dazu wurden ortsgerichtete Mutagenesestudien durchgeführt und synthetisierte Peptide analog der Stachel-Sequenz der aGPCR in funktionellen second messenger-Akkumulationsexperimenten getestet. Während die Untersuchungen des Aktivierungsmechanismus an den bereits initial charakterisierten Rezeptoren GPR126 und GPR133 unternommen wurden, konnten 11 weitere aGPCR hinsichtlich ihrer Kopplung an G-Proteine, Expression und ihres autoproteolytischen Spaltungsverhaltens in vitro analysiert werden. Dabei ist herauszustellen, dass alle untersuchten aGPCR an das Gs-Protein koppeln. GPR115, GPR116 und GPR128 zeigten sogar eine multiple Kopplung an Gs-, Gq- und Gi-Proteine. Weiterhin konnte dargelegt werden, dass die Zerstörung hoch konservierter Disulfidbrückenbindungen innerhalb der GPS durch Aminosäuresubstitution in einer konstitutiven Aktivierung des Wildtyp-Rezeptors resultiert.
50

Neuromodulation of Sex-Specific Pheromone-Mediated Behaviors

Reilly, Douglas K. 10 May 2020 (has links)
The ability of organisms to sense – and properly respond to – their environment is crucial to their survival. Higher organisms communicate with conspecifics to ensure the survival of the species. Nematodes, such as the roundworm Caenorhabditis elegans, are ubiquitous across all biomes, and rely on chemical communication to convey information with one another. The small molecules they utilize in this communication are called ascarosides. These modular pheromones are employed by all taxa, ranging from Caenorhabditis to Ascaris. The ascaroside, ascr#8, is release by hermaphroditic C. elegans to attract potential mates. Previous work has shown that a class of male specific neurons are required for sensation of this pheromone. Here, we show that these neurons initiate a neural circuit modulated by the FMRFamide-like neuropeptide, flp-3. This neuropeptide is sensed by a set of G protein-coupled receptors (GPCRs), NPR-10 and FRPR-16. Together, these components determine the behavioral valence of males to ascr#8. Within the male-specific sensory neurons, the CEM, we show that another group of GPCRs sense the ascr#8. Two of these receptors, DMSR-12 and SRW-97, are expressed in the cilia, suggesting their involvement in direct sensation of the cue. As a targeted approach to identifying and confirming receptors for ascr#8, we have developed a bioactive photoaffinity probe. We have also confirmed that the ability of ascr#8 to attract males is conserved across the genus. Together, these studies coalesce to deepen our understanding of sex-specific chemosensation and neuronal processing. These results can be used to better understand the defects that are seen in neurodegenerative diseases – many of which exhibit sex-specific defects in neuronal processing.

Page generated in 0.1005 seconds