31 |
Caractérisation fonctionnelle des variants génétiques de la région régulatrice (rSNP) des gènes du point de contrôle G1/SDionne, Joëlle January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
|
32 |
Les différents rôles de STAUFEN1 dans les points de contrôle du cycle cellulaire tumoral vs non tumoralDoran, Bellastrid 08 1900 (has links)
STAUFEN1 (STAU1) est une protéine de liaison à l’acide ribonucléique (ARN) double brin jouant un rôle important dans le contrôle post-transcriptionnel de nombreux ARN messager (ARNm). Sa déplétion diminue la prolifération des cellules non cancéreuses en altérant les transitions G1/S et G2/M. En revanche, Ceci n’a aucun impact sur la prolifération des cellules tumorales. La déplétion de STAU1 module le niveau d’expression des transcrits et/ou des protéines impliquées dans la régulation des points de contrôle des transitions de phase. Notamment, STAU1 module le niveau d’expression de la protéine CDK4 ainsi que l’abondance de l’ARNm E2F1, deux régulateurs indispensables de la transition G1/S. Le transcrit de ces deux gènes possède un site de liaison à STAU1 ou STAU1 binding site (SBS) dans la région codante ou coding sequence (CDS) et dans la région non codante en 3’ (3’UTR), respectivement. Cependant, l’importance de la liaison de STAU1 à ces transcrits n’a pas encore été étudiée. Étonnamment, la sensibilité des cellules non tumorales et tumorales à l’expression de STAU1 est inversée lors de la surexpression de STAU1. En effet, sa surexpression altère l’entrée en mitose des cellules cancéreuses et diminue leur prolifération, alors qu’elle n’a aucun effet sur la prolifération des cellules non tumorales. Lors de la mitose, STAU1 s’associe au fuseau mitotique (FM), ce qui lui permet de localiser des ARNm et de contrôler leur séquestration et/ou leur traduction locale. Cependant, le mécanisme qui permet à STAU1 de lier le FM est encore inconnu. Pour ce mémoire, nous avons donc poursuivi deux objectifs. Le premier but est de comprendre la régulation post-transcriptionnelle médiée par STAU1 des transcrits essentiels à la transition G1/S chez les cellules non tumorales. Notre hypothèse est que STAU1 par sa liaison directe à ses transcrits cibles via le SBS module leur expression. Pour ce faire, des cellules de type sauvage ou déplétées en STAU1 étaient transfectées par des plasmides exprimant les transcrits de CDK4 et d’E2F1 contenant un SBS endogène ou muté de telle sorte qu’il ne reconnait plus STAU1. L’expression des protéines CDK4 et E2F1 est dosée par un essai luciférase ou un immunobuvardage de type western ou western blot (WB). Nous avons observé que STAU1 régule négativement et positivement l’expression endogène de CDK4 et d’E2F1, respectivement, ce qui contribue au passage de la transition G1/S, donc à la prolifération cellulaire non tumorale. Les essais luciférases ont confirmé le rôle de STAU1 dans la régulation positive d’E2F1 lorsque liée au SBS dans le 3’UTR du transcrit E2F1. Malheureusement, les plasmides utilisés pour l’expression de CDK4 se sont avérés non fonctionnels, ce qui nous a forcés à mettre de côté cette expérience. Le deuxième but est d’étudier les déterminants qui régulent la localisation de STAU1 au FM chez les cellules tumorales. Pour ce faire, la localisation de STAU1 ou des mutants au FM est détectée par WB à partir de préparations des FM purifiés. Nos données montrent que le déterminant est composé de plusieurs acides aminés (aa) situés entre le 26ème et 37ème aa du côté N-terminal de la protéine STAU1. En somme, nos résultats montrent les différents rôles de STAU1 dans les cellules tumorales vs cellules non tumorales. De ce fait, STAU1 pourrait être une cible thérapeutique spécifique potentielle dans le traitement du cancer. / STAUFEN1 (STAU1) is a double stranded RNA binding protein that plays an important role in the post-transcriptional control of many mRNAs. Its depletion decreases the proliferation of non-cancer cells by altering G1/S and G2/M transitions. In contrast, this has no impact on the proliferation of tumor cells. The decrease of STAU1 expression modulates the level of transcripts/proteins of several genes involved in phase transition checkpoints, including CDK4 and E2F1, two essential regulators in G1/S transition. In addition, CDK4 and E2F1 transcripts have a STAU1 binding site (SBS) in the coding sequence (CDS) and the non-coding region in 3’ (3’UTR), respectively. However, the molecular consequence of STAU1 association with the SBS is not yet studied. Surprisingly, the sensibility of non-cancer and cancer cells to STAU1 expression is reversed following STAU1 overexpression. Indeed, its overexpression alters the entry into mitosis of cancer cells and decreases their proliferation, while it has no effect on non-cancer cells. During mitosis, STAU1 associates with the mitotic spindle, which allows it to localize mRNAs and other non-coding RNAs. STAU1 likely controls their sequestration and/or local translation during mitosis. However, the molecular determinant involved in STAU1-spindle association is still not known. Therefore, for this master thesis, we had two objectives. The first goal is to understand the post-transcriptional regulation mediated by STAU1 on transcripts that are essential for G1/S transition in non-tumor cells. Our hypothesis is that STAU1, by its direct binding to the SBS of its target transcripts, modulates their expression. To do this, plasmids coding for CDK4 and E2F1 containing a wild-type or mutated SBS that does not recognized STAU1 were transfected in wild-type and STAU1-depleted cells. Expression of CDK4 and E2F1 was detected by dual luciferase assay and western blot (WB). Our results first indicate that STAU1 negatively and positively regulates the endogenous expression of CDK4 and E2F1, respectively, which contributes to the passage of G1/S transition, and therefore to the proliferation non-tumor cells. Then, the luciferase assays confirm the role of STAU1 in E2F1 expression, depending on STAU1 binding to E2F1 SBS in its 3’UTR. Unfortunately, the plasmids used for CDK4 expression turned out to be non-functional. The second goal is to identify the molecular determinants responsible for the localization of STAU1 to the mitotic spindle in tumor cells. To this end, the localization of STAU1 or of several mutants was measured by WB using purified spindle preparations. Our data show that the determinant is composed of several amino acids (aa) located between the 26th and 37th aa at the N-terminal end of STAU1. In summary, our results show the different roles of STAU1 in tumor and non-tumor cells. Therefore, STAU1 could be a potential specific therapeutic target in cancer treatments.
|
33 |
Etude des conséquences fonctionnelles de la surexpression du facteur de transcription Sp1Deniaud, Emmanuelle 20 March 2008 (has links) (PDF)
Le facteur de transcription Sp1 régule la transcription de nombreux gènes à partir des sites riches en GC. Mon projet a été d'étudier le rôle de Sp1 dans la régulation de l'apoptose et du cycle cellulaire, qui est encore mal défini à l'heure actuelle. Nous avons montré que la surexpression de Sp1 induit un ralentissement du cycle cellulaire en phase G1 et l'apoptose. L'étude du transcriptome a permis d'identifier les mécanismes qui pourraient être à l'origine du ralentissement du cycle cellulaire : la répression de la cycline D2 et l'induction de p18 et cycline G2. Concernant l'induction de l'apoptose, les mécanismes mis en jeu sont spécifiques du type cellulaire et sont différents de ceux décrits jusqu'à ce jour. De façon inattendue, nos résultats montrent que l'ensemble de ces perturbations cellulaires requièrent la liaison de Sp1 à l'ADN mais pourrait être indépendant de son activité transcriptionnelle.
|
34 |
The brevity of G1 is an intrinsic determinant of naïve pluripotencyCoronado, Diana 19 December 2011 (has links) (PDF)
Pluripotency can be captured and propagated in vitro from the epiblast of the pre-implantation blastocysts in the form of embryonic stem cells (ESCs). ESCs are capable of unlimited proliferation in an undifferentiated state while maintain the potential to differentiate into cells of all three germ layers in the embryo, including the germline. Two key features the ES cell mitotic cycle are (i) a vastly elevated and uniform expression of Cyclin E and Cyclin E/CDK2 complexes throughout the cell cycle and (ii) a short G1 phase characterized by the lack of RB- and p53-dependent checkpoints, and reduced dependency on MAPK signalling. During my PhD project, we explored whether and how the regulation of the cell cycle actively sustains self-renewal of mouse ESCs (mESCs). We demonstrated that: 1/ the G1 phase of mESCs is a phase of increased susceptibility to differentiation inducers. Thus shortening of G1 might shield undifferentiated cells from differentiation inducers and help ESCs to self-renew in the pluripotent state. 2/ Cyclin E opposes differentiation and supports self-renewal of mESCs by two independent mechanisms, one of which being independent of CDK2 activation. 3/ LIF signalling regulates Cyclin E/CDK2 kinase activity therefore accelerating the G1 to S phase transition. Finally, we propose a model in which LIF signalling stimulates the G1 to S phase transition to shield mESCs from undesired differentiation signals and help them to self-renew in the pluripotent state
|
35 |
Modélisation d'objets 3D à l'aide de cônes généralisés profilés et ramifiés et problèmes de raccord de surfaces soulevés par ces cônesVatant, Gautier 01 January 1997 (has links) (PDF)
Les cônes généralisés (CG), introduits pour la première fois au début des années 1970, sont largement utilisés en C.A.O, en C.F.A.O et dans les domaines de l'imagerie médicale, de la robotique et de la reconnaissance de formes. Un CG est représenté, grosso-modo, par l'espace balayé par le déplacement d'une section le long d'une trajectoire. Dans ce mémoire, des méthodes de construction permettant d'obtenir des objets 3D à l'aide de ces CG sont décrites. Plus particulièrement, l'introduction de paramètres défmis par l'utilisateur (profils, orientations et déformations de la section) et représentés sous forme de fonctions, permet d'élargir la famille des objets créés par extrusion. Un cadre formel a été défini pour les fonctions défmissant les CG, afin d'assurer le plus possible la validité des résultats. Toujours dans le souci d'assurer la validité des objets créés, il a été développé des algorithmes simples et pratiques contrôlant, pendant la construction, les problèmes de recouvrement. A 1' écart des formulations mathématiques traditionnelles des CG, il est présenté une technique permettant de défmir les CG à l'aide des quaternions. Cela donne la possibilité d'inclure les paramètres de déformation de la section dans un même cadre mathématique. Dans la deuxième partie de ce mémoire, sont présentées des méthodes permettant de construire des cônes généralisés ramifiés. La notion de trajectoire arborescente est introduite, ainsi que des méthodes systématiques défmissant les parties tubulaires sur lesquelles s'appuiera l'embranchement G1 continu. La réalisation de cet embranchement nécessite l'utilisation de la théorie des raccords de surfaces dès lors que l'on représente les CG avec des surfaces de formes libres. Ainsi, les principales techniques de raccords G1 continus entre facettes rectangulaires et triangulaires de Béziers sont rappelées et étendues aux facettes B-splines. Une étude complète sur les contraintes portant sur les fonctions de raccordement est aussi présentée. Afin de valider les techniques précédentes dans un cadre précis, une discussion sur les problèmes de C et G continuité est proposée. Son but est de définir un mode de dérivation qui permet d'inclure l'ensemble des fonctions G-continues dans l'ensemble des fonctions C-continues.
|
36 |
Explore Rb/E2F Activation Dynamics to Define the Control Logic of Cell Cycle Entry in Single CellsDong, Peng January 2015 (has links)
<p>Control of E2F transcription factor activity, regulated by the action of the retinoblastoma tumor suppressor, is critical for determining cell cycle entry and cell proliferation. However, an understanding of the precise determinants of this control, including the role of other cell cycle regulatory activities, has not been clearly defined. </p><p>Recognizing that the contributions of individual regulatory components could be masked by heterogeneity in populations of cells, we made use of an integrated system to follow E2F transcriptional dynamics at the single cell level and in real time. We measured and characterized E2F temporal dynamics in the first cell cycle where cells enter the cell cycle after a period of quiescence. Quantitative analyses revealed that crossing a threshold of amplitude of E2F transcriptional activity serves as the critical determinant of cell-cycle commitment and division. </p><p>By using a developed ordinary differential equation model for Rb/E2F network, we performed simulations and predicted that Myc and cyclin D/E activities have distinct roles in modulating E2F transcriptional dynamics. Myc is critical in modulating the amplitude whereas cyclin D/E activities have little effect on the amplitude but do contribute to the modulation of duration of E2F transcriptional activation. These predictions were validated through the analysis of E2F dynamics in single cells under the conditions that cyclin D/E or Myc activities are perturbed by small molecule inhibitors or RNA interference. </p><p>In an ongoing study, we also measured E2F dynamics in cycling cells. We provide preliminary results showing robust oscillatory E2F expression at the single-cell level that aligns with the progression of continuous cell division. The temporal characteristics of the dynamics trajectories deserve further quantitative investigations.</p><p>Taken together, our results establish a strict relationship between E2F dynamics and cell fate decision at the single-cell level, providing a refined model for understanding the control logic of cell cycle entry.</p> / Dissertation
|
37 |
Protein phosphatase 6Stefansson, Bjarki. January 2007 (has links)
Thesis (Ph. D.)--University of Virginia, 2007. / Title from title page. Includes bibliographical references. Also available online through Digital Dissertations.
|
38 |
The Financial-Real Sector Nexus. Theory and Empirical Evidence.Blum, David, Federmair, Klaus, Fink, Gerhard, Haiss, Peter January 2002 (has links) (PDF)
Without doubt a well-developed financial sector is related to efficient resource allocation and growth, but there is modest consensus on the direction of that link, on the notion of what is meant by "well developed", on which subset of the financial market is crucial and thus which organisational set-up provides optimal returns for both architects and market participants alike. With sluggish growth, torn down market barriers and systemic change in the EU accession countries the direction, magnitude, sustainability, institutional set-up of the finance-growth nexus (and which), becomes one of the core issues of both macroeconomic theory and practice. This paper reviews the economic theory available, provides a well structured overview of 54 empirical studies conducted since 1964, sets the stage for constructing a data base encompassing the major three segments of financial markets (stock, bond and bank credit) and provides the methodological background for combining cross-country production function and time-series approaches in order to answer the following questions: (1) What is the direction of the finance-growth nexus, (2) which segment of the financial sector drives whatever nexus there is, and (3) what are the features of a growth supportive financial architecture. / Series: EI Working Papers / Europainstitut
|
39 |
Investigation of Multiple Concerted Mechanisms Underlying Stimulus-induced G1 Arrest in Yeast: A DissertationPope, Patricia A. 03 June 2013 (has links)
Progression through the cell cycle is tightly controlled, and the decision whether or not to enter a new cell cycle can be influenced by both internal and external cues. For budding yeast one such external cue is pheromone treatment, which can induce G1 arrest. Two distinct mechanisms are known to be involved in this arrest, one dependent on the arrest protein Far1 and one independent of Far1, but the exact mechanisms have remained enigmatic. The studies presented here further elucidate both of these mechanisms.
We looked at two distinct aspects of the Far1-independent arrest mechanism. First, we studied the role of the G1/S regulatory system in G1 arrest. We found that deletion of the G1/S transcriptional repressors Whi5 and Stb1 compromises Far1-independent arrest, but only partially, and that this partial arrest failure correlates to partial de-repression of G1/S transcripts. Deletion of the CKI Sic1, however, is more strongly required for arrest in the absence of Far1, though not when Far1 is present. Together, this demonstrates that functionally overlapping regulatory circuits controlling the G1/S transition collectively provide robustness to the G1 arrest response. We also sought to reexamine the phenomenon of pheromone-induced loss of G1/S cyclin proteins, which we suspected could be another Far1-independent arrest mechanism. We confirmed that pheromone treatment has an effect on G1 cyclin protein levels independent of transcriptional control. Our findings suggest that this phenomenon is dependent on SCFGrr1but is at least partly independent of Cdc28 activity, the CDK phosphorylation sites in Cln2, and Far1. We were not, however, able to obtain evidence that pheromone increases the degradation rate of Cln1/2, which raises the possibility that pheromone reduces their synthesis rate instead.
Finally, we also studied the function of Far1 during pheromone-induced G1 arrest. Although it has been assumed that Far1 acts as a G1/S cyclin specific CDK inhibitor, there has been no conclusive evidence that this is the case. Our data, however, suggests that at least part of Far1’s function may actually be to interfere with Cln-CDK/substrate interactions since we saw a significant decrease of co-pulldown of Cln2 and substrates after treatment with pheromone. All together, the results presented here demonstrate that there are numerous independent mechanisms in place to help robustly arrest cells in G1.
|
40 |
LENGTHENED G1 PHASE INDICATES DIFFERENTIATION STATUS IN HUMAN EMBRYONIC STEM CELLS.Calder, Ashley 10 1900 (has links)
<p>Human embryonic stem cells (hESC) have potential applications as tools for drug screening to identify small molecule regulators of self-renewal or differentiation. Elucidating the mechanisms governing lineage commitment in hESC will allow for efficient derivation of specified cell types for clinical use. Recognizing the early steps in loss of pluripotency is key to achieving both goals of drug screening and derivation of therapeutically relevant cell types. Here we report the use of a real time cell cycle fluorescent reporter for the first time in hESC that indicates onset of differentiation in a lineage unbiased manner. Pluripotent hESC possess a short cell cycle length, due primarily to a truncated G1 phase. G1 lengthens concomitant with differentiation. Stable hESC lines expressing the live cell cycle reporter exhibit fluorescence only during G1. Due to the short length of pluripotent G1 phase, G1 fluorescence is only weakly and transiently detected, however it is quickly increased to easily detectable levels upon onset of differentiation. We hypothesize that lengthened G1 phase can be used as an indicator of differentiation status of individual human embryonic stem cells.</p> <p>Cells with lengthened G1 are typically negative for pluripotency markers OCT4, Tra-1-60 and SSEA-3 following differentiation. Differentiated cells with lengthened G1 also demonstrate increased levels of lineage-specific differentiation markers at both the protein and mRNA level. Automated image analysis of hESC indicates this mutually exclusive relationship between lengthened G1 and pluripotency exists both on the cellular level and in colonies as a whole. Here we have shown that lengthened G1 indicates both loss of pluripotency and gain of lineage markers.</p> / Master of Science (MSc)
|
Page generated in 0.018 seconds