181 |
The Gas-Phase Ligand Exchange of Calcium β-diketonate ComplexesGatte, Brandi J. 02 May 2022 (has links)
No description available.
|
182 |
GAS-PHASE ION CHEMISTRY AND ION TRAP METHODOLOGIES FOR TRANSMETALATION REACTIONS AND IN-DEPTH LIPID ANALYSISKimberly C Fabijanczuk (17364238) 14 November 2023 (has links)
<p dir="ltr">Originating from J. J. Thomsons original work and the development of electrospray ionization (ESI) by John B. Fenn, mass spectrometry offers a versatile analytical tool to measure beyond an ion’s m/z, especially for biomolecules. Gas-phase ion/ion reactions within a mass spectrometer offers an attractive approach to study biomolecules as they take place on the millisecond and sub millisecond time scale, have high efficiency, allow oppositely charged ions to interact with each other in a controlled manner, and a allows for selection of each reactant prior to the reaction via ion isolation. This can be used to probe gas-phase chemistry that can reflect reactions in solution, however gas-phase reactions have no solvent effects and happen faster, making it a simpler experiment. Here, a variety of gas-phase ion/ion reactions and ion trap methodologies are described to study mostly lipids with a minor amount of transmetalation at the beginning.</p><p dir="ltr">First, a series of multivalent metals complexed to neutral ligands are demonstrated to form ion-pairs with tetraphenylborate anions via ion/ion reactions. The resulting products were subjected to collision induced activation (CID) to observe their involvement in transmetalation, complementary density functional theory (DFT) calculations are provided as well. Next, sequential ion/ion reactions were performed to convert isomeric phosphoinositol phosphates dianions to monocations to reveal structural characterization and isomeric differentiation utilizing tandem MS and dissociation kinetics. The following two chapters after, reports on complementary efforts to separate lipids in the gas-phase of different mass and charge but similar mass-to-charge (m/z) resulting in overlapping m/z signals. The first report demonstrates a physical approach where singly and double charged lipids are separated in space from each other, trapped simultaneously such that no information is lost. The second utilizes a lanthanide, Yb3+ trication complex that underwent ion/ion reactions with singly and doubly charged lipid anions of similar m/z that result in different m/z products for each singly and doubly charged lipids. Lastly, a sequential ion/ion approach utilizing hexa(ethylene glycol) dithiol as a novel reagent to charge invert structurally uninformative lipid cations to structurally informative anions with subsequent carbon-carbon double bond localization.</p>
|
183 |
Single Molecule Catalysis of Organic Ions Studied by Mass Spectrometry and Computational ChemistryJobst, Karl J. 10 1900 (has links)
<p>During the past fifty years, mass spectrometry, often hyphenated with chromatography, has developed into the most widely used technique for the quantitative and qualitative analysis of increasingly complex mixtures of (bio)organic molecules.</p> <p>One important aspect of this development concerns the relationship between the structure (atom connectivity) of a molecule and the mass spectrum obtained by electron ionization (EI). In this context, from 1960 - 1990, a wealth of studies has appeared that uses a variety of novel experimental techniques, often in conjunction with isotope labelling, to probe the structure, stability, reactivity and dissociation characteristics of the radical cations generated by EI of various classes of molecules. One highlight was the discovery of surprisingly stable distonic ions and the role they play in the dissociation chemistry of ionized molecules.</p> <p>However, mechanistic proposals based upon experimental observations can often only be considered as tentative. Synergy between experiment and theory would be ideal to remedy this situation, but it was not until recent spectacular advances in computer technology and software that this approach could be implemented. It has led to the growing realization that many rearrangement reactions of radical cations in the rarefied gas-phase involve catalysis. Proton-transport catalysis (PTC) is a prime example : here, a neutral species induces an ion to isomerize via hydrogen-bridged radical cations (HBRCs) as intermediates. An exemplary case described in this thesis concerns the ion-molecule reaction of the cyanamide ion with a single H<sub>2</sub>O molecule : experiment and theory indicate that the H<sub>2</sub>O molecule catalyzes the swift transformation of NH<sub>2</sub>-CN<sup>·</sup><sup>+</sup> into the more stable carbodiimide ion HN=C=NH<sup>·</sup><sup>+</sup>.</p> <p>The thesis exploits the synergy of tandem mass spectrometry and computational chemistry to study the role of catalysis in the association and dissociation reactions of several systems of radical cations. During these studies, a new type of a catalyzed reaction was discovered: "ion-catalysis", where an organic cation promotes the otherwise prohibitive rearrangement of a neutral. Ion-catalysis is proposed to explain the unexpected loss of NH<sub>2</sub>O<sup>·</sup> from low-energy N-hydroxyacetamide ions CH<sub>3</sub>C(=O)NHOH<sup>·</sup><sup>+</sup> : the molecular ion rearranges into the HBRC [O=C-C(H<sub>2</sub>)--H--N(H)OH]<sup>·</sup><sup>+</sup> whose acetyl (cation) component catalyzes the transformation NHOH<sup>·</sup> --> NH<sub>2</sub>O<sup>·</sup>. Another highlight involves a hybrid reaction, in which both the ion and the neutral component of an incipient HBRC catalyze one another to rearrange into more stable isomers.</p> <p>Catalysis may also play an important role in astrochemistry and a question addressed in this context is whether pyrimidine, a key component of DNA, may be generated by ion-molecule reactions. It appears that the acrylonitrile ion (AN) does not react with HCN to produce ionized pyrimidine, instead it isomerizes by PTC. However, the reaction of the ion with its neutral counterpart does not involve catalysis, but rather cyclization into the pyrimidine ion ! A related topic concerns the structures of covalently bound dimers of the ubiquitous interstellar molecules HCN and HNC. Neutralization-Reionization Mass Spectrometry in conjunction with model chemistry calculations leaves little doubt that the elusive dimers HN=C=C=NH and HC=N-C=NH are kinetically stable in the rarefied gas-phase, whereas HC=N-N=CH is not.</p> <p>The structure of ions may also be probed by interactions with selected neutral molecules rather than dissociative collision experiments (MS/MS). An exciting case involves the differentiation of isomeric heterocyclic ions by ion-molecule reactions with dioxygen. Here, too, model chemistry calculations play an essential role in understanding the mechanism and the scope of the reaction.</p> / Doctor of Philosophy (PhD)
|
184 |
PROBING THE STRUCTURAL CHANGES AND REACTIVITY OF IONS ON WELL-DEFINED INTERFACES PREPARED USING ION SOFT LANDINGHugo Yuset Samayoa Oviedo (18339990) 10 April 2024 (has links)
<p dir="ltr">Interfaces play an important role in a broad range of physical, chemical, and biochemical processes. For example, nutrient transport from and to cells happens at the cellular membrane interface, the corrosion of metals occurs due to chemical reactions at the solid/air interface, and the development of waterproof clothing relies on the modification of the clothing surface with hydrophobic species. The importance and complexity of interfaces make a detailed understanding of the interfacial physicochemical processes central to both the fundamental science and the development of new technologies. Specifically in the fields of energy storage/production and heterogeneous catalysis, understanding the transformations of the active species on surfaces leads to the development of high-performance, stable interfaces. In the thesis presented herein, ion soft landing was used as a preparative technique to understand the chemical changes that ions undergo on surfaces. Ion soft landing is a mass spectrometry technique in which polyatomic ions are deposited onto surfaces while preserving their chemical structure and charge state. The advantage of using ion soft landing to study interfaces is that it enables the preparation of well-defined ionic interfaces by the deposition of mass-selected ions on a defined surface area with high control over the amount of deposited material. Because ion soft landing uses purified ion beams formed in the gas phase, it also allows to study the chemical properties of the analytes in the absence of counterions or solvent molecules. Collectively, these capabilities make ion soft landing a powerful approach for preparing ionic interfaces and studying their chemical properties. A new direction in ion soft landing research takes advantage of gas phase ion chemistry techniques, such as collision-induced dissociation, to generate well-defined reactive fragment ions as unique building blocks for studying chemistry at interfaces. <b>Chapter 2 </b>of this thesis discusses the development of an ion soft landing instrument that enables high transmission of fragment ions for their deposition onto surfaces. Ion soft landing of reactive fragment ions opens up possibilities for studying their stability and reactivity on surfaces providing a path to the controlled preparation of unique ionic interfaces. <b>Chapters 3 </b>and <b>4 </b>describe an unusual spontaneous ligand loss observed for soft landed [Ni(bpy)<sub>3</sub>]<sup>2+0</sup>, an ion of interest in the field of catalysis, and its stabilization by codeposition with anions. We compared the reactivity of [Ni(bpy)<sub>3</sub>]<sup>2+ </sup>on surfaces against that of [Ni(bpy)<sub>2</sub>]<sup>2+ </sup>and [Ni(bpy)]<sup>+ </sup>species (both formed by ligand removal in the gas phase). This comparison indicates that the dissociation of [Ni(bpy)<sub>3</sub>]<sup>2+</sup> occurs both due to its reorganization on a surface and by charge-reduction. Both processes substantially reduce ligand binding energy and facilitate ligand loss from the complex.</p><p dir="ltr"><b>Chapter 5 </b>diverges from ion soft landing and instead presents a gas-phase ion chemistry study on the stability of cucurbituril-viologen host-guest complexes to better understand the intrinsic properties that influence the strength of their interaction. We found that there is a “perfect fit” size of the host that maximizes interactions with the guest thus increasing its stability. In addition, guests of smaller sizes that are better incorporated into the host have a substantial stability compared to those that have functional groups extending outside of the protecting cavity of the host. The results of this work reveal a strategy to stabilize viologens in the gas phase for the preparation of functional interfaces using ion soft landing.</p><p dir="ltr">Finally, <b>Chapter 6 </b>shows the results of a work at the teaching/learning interface, specifically regarding an undergraduate research project developed for the Analytical Chemistry I course (CHM323) at Purdue University. The goal of this project was to further develop students’ scientific skills on planning, problem-solving, and critical thinking to assess the performance of two analytical techniques. Specifically, the project described in <b>Chapter 6 </b>was designed in such a way that students had to do research on appropriate analytical techniques to quantify ascorbic acid in an unknown sample, propose an experimental protocol, perform it in the laboratory, and concisely summarize the results of their work in a lab report.</p><p dir="ltr">In summary, the work presented in this thesis encompasses three areas. First, it shows the advantages of using fragment ions produced in the gas phase to study the complex physicochemical processes occurring at interfaces. Second, it presents a study on the gas-phase stability of viologen-based host-guest complexes with the prospect of making viologens accessible for the preparation of functional interfaces using ion soft landing. Finally, it describes an undergraduate laboratory project aimed at developing the scientific skills of students in an analytical chemistry course.</p>
|
185 |
Valorization of Bio-Alcohols into Added Value ChemicalsBalestra, Giulia 28 July 2022 (has links)
[ES] El presente trabajo de investigación está centrado en la valorización y la mejora del bioetanol, empleando catalizadores heterogéneos, en un reactor de flujo continuo a escala de laboratorio.
En primer lugar, en los laboratorios del Departamento de Química Industrial de la Universidad de Bolonia (Unibo), se ha estudiado la conversión catalítica del etanol en fase gaseosa sobre catalizadores basados en hidroxiapatitas (HAP). Los ensayos catalíticos se llevaron a cabo alimentando un reactor de lecho fijo a escala de laboratorio, empleando el catalizador en forma de pellets y una mezcla de etanol/He, en el rango de temperatura de 300-600 ºC. El interés se focalizó en la formación de productos de alta condensación, con el fin de obtener una mezcla orgánica que pueda ser empleada como bio-combustible. Tras seleccionar las condiciones de reacción, se sintetizaron y probaron diferentes hidroxiapatitas con capacidad de intercambio iónico que poseen metales de transición (Fe, Cu) y metales alcalinotérreos (Sr) en su composición. Mientras que las HAP conteniendo metales de transición actúan esencialmente como catalizadores ácidos, produciendo principalmente el producto de la deshidratación del etanol, el etileno, el catalizador de Sr-HAP permite la formación de una mezcla de reacción compleja, la cual necesita de una mayor optimización para cumplir con los requisitos adecuados para su posterior empleo como biofuel.
A continuación, en los laboratorios del Instituto de Tecnología Química (ITQ) de la Universidad Politécnica de Valencia (UPV), el estudio se centró en dos materiales catalíticos diferentes, el óxido de zirconio y la sepiolita, una arcilla natural abundante en España. Ambos materiales se han probados para la transformación de etanol, en el rango de temperatura de 300-450 ºC, empleando un reactor de lecho fijo a escala laboratorio, con el catalizador en forma de pellets, y usando una mezcla de etanol/N2.
Los catalizadores con óxido de zirconio se prepararon mediante dos métodos diferentes, precipitación e hidrotermal, variando algunos de los parámetros de síntesis (pH, naturaleza de la base), y empleando algunos metales de transición como elementos dopantes (Ti, Y). La presencia de un elemento dopante en la estructura de la zirconia favorece la estabilización de las fases tetragonal y cúbica frente a fase monoclínica. Todas las muestras exhibieron un comportamiento ácido. Resulta interesante que la zirconia dopada con 5%mol de Ti exhibe un comportamiento catalítico diferente, produciendo el dietiléter como principal producto a 300ºC, mientras que los otros catalizadores producen principalmente etileno, ambos, productos de la deshidratación del etanol.
Por otra parte, se ha estudiado el efecto de las propiedades ácido-base de la sepiolita, modificada con metales alcalinos (Na, K, Cs) y cargas de metal variables (2, 4, 5, 7, 14 wt%), y de las propiedades redox de la sepiolita, como soporte de CuO o NiO, sobre la conversión catalítica de etanol a n-butanol. Las sepiolitas tratadas térmicamente actúan principalmente como catalizadores ácidos, produciendo preferentemente productos de deshidratación del etanol (etileno y dietiléter). Mientras que la presencia de un metal de transición no favorece la producción de n-butanol, la presencia de un metal alcalino en el sistema catalítico parece ser crucial para la formación de n-butanol. Los mejores resultados en términos de actividad (conversión de etanol, 59%) y selectividad (30%) de n-butanol se han obtenido a 400 ºC y un tiempo de contacto, W/F, de 2 g/mL·s, con el catalizador basado en sepiolita calcinada a 500 ºC, y modificada con 7 wt% de cesio, mediante impregnación en fase acuosa. / [CA] El present treball de recerca està centrat en la valorització i la millora del bioetanol, emprant catalitzadors heterogenis, en un reactor de flux continu a escala de laboratori.
En primer lloc, en els laboratoris del Departament de Química Industrial de la Universitat de Bolonya (Unibo), s'ha estudiat la conversió catalítica de l'etanol en fase gasosa sobre catalitzadors basats en hidroxiapatitas (HAP). Els assajos catalítics es van dur a terme alimentant un reactor de llit fix, a escala de laboratori, contenint el catalitzador en forma de pèl·lets amb una mescla d'etanol/He, en el rang de temperatura de 300-600 °C. L'interés es va focalitzar en la formació de productes d'alta condensació, amb la finalitat d'obtindre una mescla orgànica que puga ser emprada com a bio-combustible. Després de seleccionar les condicions de reacció, es van sintetitzar i van provar diferents hidroxiapatitas amb capacitat d'intercanvi iònic que posseeixen metalls de transició (Fe, Cu) i metalls alcalinotérreos (Sr) en la seua composició. Mentre que les HAP contenint metalls de transició actuen essencialment com a catalitzadors àcids produint principalment el producte de la deshidratació de l'etanol, l'etilé, el catalitzador de Sr-HAP permet la formació d'una mescla de reacció complexa, la qual necessita d'una major optimització per a complir amb els requisits adequats per a la seua posterior ocupació com biofuel.
A continuació, en els laboratoris de l'Institut de Tecnologia Química (ITQ) de la Universitat Politècnica de València (UPV), l'estudi es va centrar en dos materials catalítics diferents, l'òxid de zirconio i sepiolita, una argila natural abundant a Espanya. Tots dos materials s'han provats per a la transformació d'etanol en el rang de temperatura de 300-450 °C, emprant un reactor de llit fix a escala laboratori, contenint el catalitzador en forma de pèl·lets, i usant una mescla d'etanol/N2
Els catalitzadors amb òxid de zirconio es van preparar mitjançant dos mètodes diferents, precipitació i hidrotermal, variant alguns dels paràmetres de síntesis (pH, naturalesa de la base), i emprant alguns metalls de transició com a elements dopants (Ti, Y). La presència d'un element dopant en l'estructura de la zircònia afavoreix l'estabilització de les fases tetragonal i cúbica enfront de fase monoclínica Totes les mostres van exhibir un comportament àcid. Resulta interessant que la zircònia dopada amb 5%mol de Ti exhibisca un comportament catalític diferent, produint el dietiléter com a principal producte a 300 °C, mentre que les altres mostres produeixen principalment etilé, tots dos, productes de la deshidratació de l'etanol.
D'altra banda s'ha estudiat l'efecte de les propietats àcid-base de la sepiolita, modificada amb metalls alcalins (Na, K, Cs) i càrregues de metall variables (2, 4, 5, 7, 14 wt%), i de les propietats redox de la sepiolita, com a suport de CuO o NiO, sobre la conversió catalítica d'etanol a n-butanol. Les sepiolites tractades tèrmicament actuen principalment com a catalitzadors àcids, produint principalment productes de deshidratació de l'etanol (etilé i dietiléter). Mentre que la presència d'un metall de transició no afavoreix la producció de n-butanol, la presència d'un metall alcalí en el sistema catalític sembla ser crucial per a la formació del n-butanol. Els millors resultats en termes d'activitat (conversió d'etanol, 59%) i selectivitat (30%) de n-butanol s'han obtingut a 400°C i un temps de contacte, W/F, de 2 g/ml·s amb el catalitzador compost de sepiolita calcinada a 500 °C, i modificada amb 7 wt% de Cs. / [EN] The present research work focused on the valorisation and upgrading of bio-ethanol over heterogeneous catalysts in a lab-scale continuous gas-flow system.
Firstly, in the laboratories of the Department of Industrial Chemistry of the University of Bologna (Unibo), the catalytic ethanol gas-phase conversion was studied over hydroxyapatite (HAP) based catalysts. Catalytic tests have been carried out in the temperature range 300-600°C by feeding an ethanol/He mixture into a quartz lab-scale fixed bed reactor of pelletized catalyst. The focus was placed on enhancing the formation of higher condensation products in order to obtain an organic mixture with application as bio-fuel. After choosing the reaction conditions, ion-exchanged hydroxyapatite with transition metals (i.e., Fe, Cu) and alkaline earth metal (i.e., Sr) have been synthesized and tested. While the transition metal-exchanged HAP acted essentially as acid catalysts, yielding mainly the dehydration product of ethanol, ethylene, the Sr-HAP catalyst led to the formation of a complex reaction mixture the composition of which need further optimization in order to fill the requisite to be used as fuel-blend.
Then, in the laboratories of the Institute of Chemical Technology (ITQ) of the Polytechnic University of Valencia (UPV), the study focused on two different catalytic materials, zirconium oxide and the natural clay sepiolite. Both the materials have been tested into the ethanol transformation carrying out the catalytic tests in the temperature range 300-450 °C by feeding an ethanol/N2 mixture into a quartz lab-scale fixed bed reactor of pelletized catalyst.
Zirconium-oxide based catalysts have been prepared through two different methods, precipitation and hydrothermal, by varying some synthetic parameters (i.e., pH, the nature of the base) and by adding a transition metal as dopant agent (i.e., Ti and Y). The presence of a dopant into the zirconia structure favoured the stabilization of the tetragonal or cubic phase against the monoclinic one. All samples exhibited acidic behaviour. Interestingly, 5%mol Ti-doped zirconia exhibited a different catalytic behaviour yielding diethyl ether as major product at 300°C, while all the others samples produced mainly ethylene, both dehydration products of ethanol.
The effect of acid-base properties of sepiolite, using alkali metals (i.e., Na, K, Cs) with different metal loading (i.e., 2, 4, 5, 7, 14 wt%) as promoters, and of the redox properties of sepiolite-supported CuO or NiO, on the catalytic conversion of ethanol into n-butanol has been investigated. Thermal treated sepiolite samples mainly acted as acid catalyst, yielding preferentially the dehydration products of ethanol (ethylene and diethyl ether). While the presence of a transition metal did not favour n-butanol production, the presence of an alkali metal into the catalytic system appeared to be crucial for n-butanol formation. Best results in terms of activity (ethanol conversion, 59%) and n-butanol selectivity (30%) where obtained at 400ºC and a contact time, W/F, of 2 g/mL·s over the catalyst consisting of sepiolite calcined at 500ºC modified with 7 wt% of cesium. / Balestra, G. (2022). Valorization of Bio-Alcohols into Added Value Chemicals [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/184991
|
186 |
<b>Development of a digital Dual-trap mass spectrometer for gas-phase ion/ion chemistry studies of High-Mass Biomolecules</b>Liangxuan Fu (19154452) 17 July 2024 (has links)
<p dir="ltr">Multiply-charged ions of intact biomolecules generated from electrospray ionization (ESI) have drawn researchers' interest in the field of native mass spectrometry (MS) for decades because these ions carry mass and charge information of the intact molecules and interactions among different units. However, the confinement of multiple charge states in a narrow range of <i>m/z</i> makes mass and charge assignments challenging, especially for analytes with a mass greater than 100 kDa. Gas-phase ion/ion reactions have proven to be powerful techniques that facilitate the interpretation of mass spectra of natively sprayed macromolecular analytes by manipulating the masses and charges of ions detected.</p><p dir="ltr">The proton-transfer reaction (PTR) is the most used gas-phase ion/ion reaction method. It utilizes perfluorinated PTR reagents to "grab" protons away from the analyte ions, thereby reducing their charges. A novel charge state manipulation technique called "ion parking," based on PTR, has been developed. In this method, ion signals are accumulated to one or a range of charge states by selectively inhibiting reactions between the target charge state and the PTR reagents via resonance excitation.</p><p dir="ltr">The multiply-charged ion attachment (MIA) reaction is another gas-phase ion/ion reaction approach. It utilizes the significant <i>m/z</i> displacement caused by the attachment of multiply-charged reagent ions, and it has been proven useful for mass analysis of heterogeneous macromolecular analytes with a mass greater than 1 MDa.</p><p dir="ltr">All gas-phase ion/ion reaction techniques require mutual storage of ions in opposite polarities within an electrodynamic quadrupole ion trap, such as a 3D quadrupole ion trap (QIT) or a linear quadrupole ion trap (LIT). Electrodynamic ion traps use high-voltage (HV) drive radio frequencies (RF) to trap ions in a quadrupolar field, typically employing a sinusoidal waveform (sine wave). A digital quadrupole ion trap (DIT) is an unconventional electrodynamic ion trap that uses a digital waveform (square wave) as the drive RF. The high agility of square waves makes DIT an ideal mass analyzer for studying high <i>m/z</i> ions resulting from gas-phase ion/ion reactions. This dissertation describes the development of a novel home-built digital dual-trap mass spectrometer and ion/ion chemistry studies of large biomolecules within the instrument.</p>
|
187 |
Quantum chemical calculations on small Aluminium, Iron and Cobalt containing oxide clustersLeach, Stephen 08 November 2024 (has links)
Das Verständnis von Katalysatormaterialien ist nach wie vor von größter Bedeutung für die Verbesserung umweltfreundlicher Technologien und die chemische Industrie. Die Untersuchung von Metalloxidclustern in der Gasphase ergänzt das Verständnis dieser Klasse von Katalysatormaterialien. Ein aktives Zentrum kann in der Gasphase isoliert untersucht werden, was bedeutet, dass der Cluster ein katalytisch aktives Zentrum in einem industriell relevanten Katalysatormaterial darstellen kann, das unter streng kontrollierten Bedingungen verfügbar ist. Dichtefunktionaltheorie (DFT) und Wellenfunktionsmethoden werden verwendet, um die geometrischen und elektronischen Strukturen sowie die Reaktivität von zwei verschiedenen Aluminiumoxidsystemen zu untersuchen: [Al3(μ2-OH)2(O)(PhSi(OSiPh2O)3)2]ꟷ, mit Ph = Phenyl ist, und MAl7O12+, mit M = Fe oder Co ist.
Die Ergebnisse für [Al3(μ2-OH)2(O)(PhSi(OSiPh2O)3)2]ꟷ deuten darauf hin, dass die konjugierte Base nach der Deprotonierung eine zusätzliche Stabilisierung erfährt. Dadurch wird die Azidität der AlIV-O(H)-AlIV Einheiten vergleichbar mit derjenigen von verbrückenden SiIV-O(H)-AlIV-Einheiten in Zeolithen. Dies ist im Zusammenhang mit Brønstedsauren Zeolithen von Bedeutung, die Al-Spezies außerhalb des Gerüsts aufweisen. In Bezug auf MAl7O12+, mit M = Fe oder Co, sind die vorgeschlagenen Strukturen isomorph mit der ursprünglichen Al8O12+ Struktur, enthalten aber eine mehrfach gebundene [M(IV)=Ot]2+ Einheit anstelle der terminalen [Al(III)ꟷOt●]2+ Radikalstelle. Dies erklärt die stark reduzierte Fähigkeit zur Abstraktion eines H-Atoms aus CH4 für M = Fe, Co im Vergleich zu M = Al, da die Stabilität der Metall-Oxo-Mehrfachbindung die Abstraktion von den H-Atoms erschwert. Diese kontrollierte Änderung der Reaktivität ist nur möglich, weil die Übergangsmetalle Fe und Co in der Oxidationsstufe +IV stabil sind, die für Al nicht zugänglich ist. / The understanding of materials for catalysis remains of utmost importance to improve green technologies and chemical industries. The study of metal oxide gas-phase clusters complements the understanding of this class of catalytic materials. An active site in isolation can be studied in the gas-phase, meaning the cluster can represent a catalytic active centre in an industrially relevant catalyst material, available under highly controlled conditions. Density functional theory (DFT) and wavefunction calculations are used to study the geometric and electronic structures as well as the reactivity of two distinct aluminium oxide systems; [Al3(μ2-OH)2(O)(PhSi(OSiPh2O)3)2]ꟷ, where Ph = Phenyl; and MAl7O12+, where M = Fe or Co. Relating to [Al3(μ2-OH)2(O)(PhSi(OSiPh2O)3)2]ꟷ, the results suggest that upon deprotonation, the conjugate base gains additional stabilization. This renders the acidity of the AlIV-O(H)-AlIV units comparable to that of bridging SiIV-O(H)-AlIV entities in zeolites. Which is relevant in the context of Brønsted acidic zeolite materials that exhibit extra-framework Al species. Relating to MAl7O12+, with M = Fe or Co, the proposed structures are isomorphous with the parent Al8O12+ structure, but contain a multiply bonded [M(IV)=Ot]2+ unit instead of the terminal [Al(III)ꟷOt●]2+ radical site. This explains the largely reduced ability to abstract an H-atom from CH4 for M = Fe, Co compared to M = Al, as the stability of the multiple metal-oxo bond results in a barrier for H-atom abstraction. This controlled change in reactivity is only possible because the transition metals Fe and Co are stable in the +IV oxidation state, which is not accessible for Al.
|
188 |
Photocatalysis studies using mesoporous modified V-MCM-48 Stober synthesis: acetaldehyde, carbon monoxide, ethanol, acetone, 2-propanol, & acetonitrileMahoney, Luther James January 1900 (has links)
Master of Science / Department of Chemistry / Kenneth J. Klabunde / Although Degussia-Huls P-25 TiO[subscript]2 semiconductor photocatalyst has high photodegradation rate for organic molecules, it works only under ultra-violet (UV) light. Mesoporous metal doped V-MCM-48 silica was synthesized under ambient conditions for use as a visible-light photocatalyst to convert toxic probe molecules to innocuous products: CO[subscript]2 + H[subscript]2O. The synthesis employed a modified Stober metal doped MCM-48 silica method. Powder X-ray diffraction (XRD), diffuse-reflectance-ultra-violet-visible (DR-UV-vis) spectroscopy, and N[subscript]2 adsorption-desorpton analysis characterization methods were completed on V-MCM-48 mesoporous material. These characterization methods indicate V-MCM-48 structure had formed with visible light absorption and mesoporous properties. Photocatalysis studies were completed with V-MCM-48 under dark, visible, and UV-light illumination conditions for the following probe molecules: acetaldehyde, carbon monoxide, ethanol, acetone, 2-propanol, and acetonitrile. Acetaldehyde over V-MCM-48 was converted to CO[subscript]2 under dark, visible, and UV-light conditions. Carbon monoxide photooxidation occurred over V-MCM-48 under visible and UV-light. Ethanol and acetonitrile had smaller photodegradation activity over V-MCM-48. Acetone and 2-propanol had no activity photocatalytically. Under dark and visible light illumination, V-MCM-48 consumed approximately one-half acetaldehyde and produced one-third CO[subscript]2 concentration as compared with the P-25 TiO[subscript]2 under UV-light. V-MCM-48 produced two-thirds of the amount of CO[subscript]2 in comparison to nanoparticle Au/ZnO catalyst under UV-light. The results infer V-MCM-48 might be useful in gas and liquid phase photocatalysis including water-splitting due to a high oxidation state (V[superscript]5+), visible light absorption, and high surface area. In conclusion, an extended literature review has been completed and literature employed extensively throughout the thesis with potential methods to further the research on V-MCM-48/Si-MCM-48 in catalysis, chromatography, adsorption/gas separation, and solar collection/water-splitting.
|
189 |
BINDING ENERGIES AND SOLVATION OF ORGANIC MOLECULAR IONS, REACTIONS OF TRANSITION METAL IONS WITH, AND PLASMA DISCHARGE IONIZATION OF MOLECULAR CLUSTERSAttah, Isaac Kwame 03 May 2013 (has links)
In this dissertation, different approaches have been employed to address the quest of understanding the formation and growth mechanisms of carbon-containing molecular ions with relevance to astrochemistry. Ion mobility mass spectrometry and DFT computations were used to investigate how a second nitrogen in the pyrimidine ring will affect the formation of a covalent bond between the benzene radical cation and the neutral pyrimidine molecule, after it was shown that a stable covalent adduct can be formed between benzene radical cation and the neutral pyridine. Evidence for the formation of a more stable covalent adduct between the benzene radical cation and the pyrimidine is reported here. The effect of substituents on substituted-benzene cations on their solvation by an HCN solvent was also investigated using ion mobility mass spectrometry and DFT computations were also investigated. We looked at the effect of the presence of electron-withdrawing substituents in fluorobenzene, 1,4 di- fluorobenzene, and benzonitrile on their solvation by up to four HCN ligands, and compared it to previous work done to determine the solvation chemistry of benzene and phenylacetylene by HCN. We report here the observed increase in the binding of the HCN molecule to the aromatic ring as the electronegativity of the substituent increased. We also show in this dissertation, DFT calculations that reveal the formation of both hydrogen-bonded and electrostatic isomers, of similar energies for each addition to the ions respectively. The catalytic activity of the 1st and 2nd row TM ions towards the polymerization of acetylene done using the reflectron time of flight mass spectrometry and DFT calculations is also reported in this dissertation. We explain the variation in the observed trend in C-H/C-C activity of these ions. We also report the formation of carbide complexes by Zr+, Nb+, and Mo+, with the acetylene ligands, and show the thermodynamic considerations that influence the formation of these dehydrogenated ion-ligand complexes. Finally, we show in this dissertation, a novel ionization technique that we employed to generate ions that could be relevant to the interstellar and circumstellar media using the reflectron time of flight mass spectrometry.
|
190 |
Reações de solvólise em fase gasosa do cátion +SiCl3: experimento e teoria / Solvolysis reactions of cation +SiCl3: Experiment and TheoryFirmino, Thiago Diamond Reis 21 June 2010 (has links)
Íons polihalogenados de Si, X3Si+ (X = F, Cl), são fragmentos facilmente gerados em espectrometria de massas por ionização eletrônica de compostos de silício polihalogenados. Estes cátions possuem um elevado caráter eletrofílico e desempenham um papel importante como intermediários em processos de corrosão auxiliados por plasma utilizados na fabricação de dispositivos em microeletrônica. Esta dissertação apresenta um estudo sobre a reatividade dos íons +SiCl3, em fase gasosa, perante uma série de substratos neutros simples como água, alcoóis, amônia, aminas e algumas bases doadoras de elétrons π. As reações íon-molécula em fase gasosa foram caracterizadas do ponto de vista experimental por espectrometria de massas de ressonância ciclotrônica de íons por transformada de Fourier (FTICR) a pressões da ordem de 10-8 Torr. As reações foram acompanhadas em função do tempo de reação na cela do espectrômetro, o que permitiu a elucidação de uma série de reações sequenciais. O perfil de energia das reações e as estruturas dos íons silicênios formados nestas reações foram também caracterizados por métodos de química computacional, usando métodos ab initio e métodos baseados na teoria do funcional da densidade, a fim de elucidar o mecanismo das reações. Observou-se que o cátion +SiCl3 reage rapidamente em fase gasosa com os diversos substratos neutros através de processos semelhantes a reações de solvólise que resultam na adição do neutro seguida de eliminação de HCl. Em vários dos casos, foi possível observar a solvólise total do cátion com substituição dos três átomos de cloro. Os cálculos revelam que estas reações se processam inicialmente pela adição do eletrófilo aos centros ricos em densidade eletrônica dos substratos neutros e que estes adutos são mais estáveis que os reagentes isolados. O estado de transição destas reações envolve uma migração 1,3 de um hidrogênio e a energia calculada para o estado de transição é consideravelmente menor que a energia dos reagentes, fato este comum para reações rápidas íon/molécula em fase gasosa. Os cálculos para a espécie correspondente +CCl3 revelam que este tipo de reação não é favorável para os cátions metílicos substituídos e experimentalmente reações semelhantes não são observadas para +CCl3. No caso dos íons ClnSi(OH)3-n+ (n=1, 2 e 3), oriundos das reações de hidrólise do íon +SiCl3, observou-se reações secundárias de condensação com SiCl4 que levam a formação de espécies iônicas com ligações tipo siloxanas (-Si-O-Si-). Os cálculos teóricos sugerem que estas reações se processam inicialmente através de um intermediário tipo clorônio, R1-Cl+-R2 seguida de uma transferência formal de um átomo de Cl e rearranjo para uma estrutura tipo siloxana. / Polyhalogenated silicenium ions, X3Si+ (X = F, Cl), are common fragment ions in the mass spectra of polyhalogenated silanes obtained by electron ionization. These ions are powerful electrophiles and are believed to play a role in plasma enhanced corrosion processes and plasma enhanced chemical vapour deposition processes. In this dissertation, we present some new results on the gas-phase reactivity of the +SiCl3 ion with a number of simple n electron donor bases such as water, alcohols, ammonia, amines and some π electron donor bases. Ion-molecule reactions were characterized experimentally by Fourier transform ion cyclotron resonance mass spectrometry (FTICR) at pressures in the 10-8 Torr range. Reactions were followed as a function of trapping time of the ions in the cell of the spectrometer and this allowed for the identification of subsequent reactions of the primary product ions. The energy diagram and structure of the different silicenium ions were also characterized by computational chemistry using both ab initio and density functional theory methods in order to understand the mechanism of these reactions. +SiCl3 reacts rapidly in gas phase with various neutral substrates through processes similar to solvolysis in which the neutral substrate adds onto the silicenium ion followed by elimination of HCl. In some cases, complete solvolysis is observed with substitution of all three chlorine atoms. The calculations show that reactions proceed by initial addition of the electrophile onto the electron center of the neutral substrates giving rise to stable adducts. The transition state for these reactions involve a 1,3 hydrogen migration and the calculated energy for these transition states is less than the energy of the isolated reactants, a fact that is common to fast gas-phase ion-molecule reactions. Similar calculations for +CCl3 reveal similar solvolysis reactions to be energetically unfavourable, and in fact these reactions are not observed experimentally. Secondary reactions have been observed for the product ions ClnSi(OH)3-n+ (n = 1, 2 and 3), obtained from successive hydrolysis of +SiCl3, with the parent SiCl4 neutral. These secondary condensation reactions yield ionic species containing a siloxane type linkage (-Si-O-Si-). The theoretical calculations suggest that is that these secondary condensation reactions initially proceed via chloronium ion intermediate, R1-Cl+-R2 , followed by formal Cl transfer and rearrangement to a siloxane type structure.
|
Page generated in 0.037 seconds