201 |
Quantendynamik von S>N2-Reaktionen / Quantum Dynamics of SN2 ReactionsHennig, Carsten 01 November 2006 (has links)
No description available.
|
202 |
Erzeugung, Nachweis und Reaktionen reiner, teiloxidierter und substituierter Kohlenwasserstoffradikale in der Gasphase / Formation, Detection and Reactions of Pure, Partially Oxidated and Substituted Hydrocarbon Radicals in the Gas PhaseWehmeyer, Jens 23 April 2002 (has links)
No description available.
|
203 |
In situ Charakterisierung der Phasenbildung — Konzept und Anwendung der Analyse von Festkörper-Gas-Reaktionen durch GesamtdruckmessungenSchöneich, Michael 22 March 2013 (has links) (PDF)
In der vorliegenden Arbeit wird das Konzept einer druckbasierten Analyse von Fest-Gas-Gleichgewichten hinsichtlich theoretischer wie experimenteller Zusammenhänge untersucht. Hierfür erfolgt eine gezielte Nutzung der Beziehungen von theoretischen und experimentell zugänglichen physikalischen Parametern, um so die Grundlage für eine spätere Anwendung im Kontext der Syntheseplanung zu ermöglichen. Im Speziellen handelt es sich im vorgestellten Konzept um die aus festkörperanalytischer Sicht häufig vernachlässigte Beziehung zwischen dem Dampfdruck von Festkörpern und dem chemischen Potenzial.
Neben der theoretischen Erarbeitung des Analysekonzeptes befasst sich die vorgestellte Arbeit zusätzlich mit dessen experimenteller Umsetzung anhand der Entwicklung bzw. Optimierung der Analyseverfahren der Hochtemperatur-Gasphasenwaage sowie des automatisierten Membrannullmanometers. Abgeschlossen wird die Arbeit zudem durch die anschauliche Vorstellung der praktischen Anwendung des Konzeptes hinsichtlich unterschiedlicher Fragestellungen (Theorie vs. Experiment: Quecksilber/Phosphor/Iod, Analyse der Phasenbildung: Arsen/Phosphor, rationale Syntheseplanung: IrPTe, Syntheseoptimierung: Bi13P3I7, Kinetik: FeAs).
|
204 |
Studies On Synthesizing Fe And Fe-Cu Nanopowders By Levitational Gas Condensation Process And Their Consolidation CharacteristicsSivaprahasam, D 12 1900 (has links) (PDF)
There exist large number of techniques for the preparation of nanostructured materials. Among them the preparation of nanopowders by gas/vapour condensation is a popular one. Because of very high level of surface to volume ratio, powders of metals which may or may not be reactive in the bulk form undergo vigorous oxidation. Oxidation once initiated continues in an auto catalytic fashion leading to a rise in temperature further increasing the oxidation rate. Therefore, the nanopowders are consolidated in situ under high vacuum. Alternatively a thin passivating oxide layer of few nm can be produced by slow exposure to air. Such powders lend themselves to be handled in further processing in ambient atmosphere. The main objective of the present research is to understand the various scientific and technological issues involved in preparing such passivated nanopowders by levitational gas condensation (LGC) technique, a relatively less explored vapour condensation process and their subsequent consolidation by the powder metallurgical route of compaction and sintering. The nanopowders systems studied are Fe and Fe-Cu (4 wt. %Cu).
In chapter 1 a brief review of the gas condensation process and the consolidation behavior of nanopowders produced by this method were carried out. Existing knowledge on various topics relevant for the present study like formation of nanoparticles, agglomeration during gas condensation, physical, structural and chemical nature of the passive layer formed during passivation, compaction and sintering behaviour of this passivated nanopowders were discussed.
Chapter 2 details the synthesis of Fe nanopowders by levitational gas condensation process and its physical and structural characteristics. The nanopowders in the as synthesized condition showed extremely low packing density due to loosely packed weakly interlocked agglomerates. The nanoparticles manifest as three dimensional reticulated spongy structure composed of chains of these nanoparticles. Heat transfer calculation carried out to determine the particle temperature at different distance from the levitating drop indicates that the nanoparticles can be ferromagnetic at a distance of less than 2 mm away from the levitation drop and hence the magnetic nature of the materials plays an important role in the formation of nanoparticle chains and spongy agglomerates. Passivation of the nanopowders by slow exposure to air produces 3-4 nm thick oxide layer (Fe3O4) over α-Fe and the volume of these oxides was around 45%.
The 3rd chapter presents and discusses the results of Fe-Cu alloy nanopowder synthesized by levitating gas condensation process. While synthesis of elemental nanopowders by gas condensation is straight forward as the operating conditions only influence the particle size, alloys require careful control of the levitating drop composition. Although initially we start the process with levitated drop of required composition, the vapour generated will be richer in more volatile element (Cu in our case). Thus the composition of the levitated drop progressively becomes deficient in Cu which in turn reduces Cu in the vapour. Composition of the drop can be stabilised by continuous feeding of the alloy of required composition that can be estimated from the knowledge of equilibrium relation. To establish the equilibrium relationship between composition of the liquid and vapour in evaporation and condensation, phase diagram in the liquid and vapour region was calculated and was validated by determining composition of the drops. Good agreement between the drop composition and the composition predicted by the phase diagram were observed. Various physical, chemical and structural properties of the Fe-Cu nanopowders are characterized in detail using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and thermogravimetry (TG) analysis. The overall chemical composition of the Fe-Cu alloy nanopowders and of the individual agglomerates is same as the composition of feed materials used. However, Cu was found to segregate to the surface of the nanopowders which is attributed to minimization of surface energy with Cu at the surface. The total weight loss observed in TG in flowing hydrogen indicates that the surface passive layer of Fe-Cu appears to be very thin compared to Fe.
The consolidation behaviour of both Fe and Fe-Cu nanopowders was studied by both conventional and spark plasma sintering (SPS) and are discussed in chapter 4. The as collected nanopowders from the apparatus have extremely low apparent density. The powders were further subjected to soft milling in a ball mill under ethanol to disentangle the agglomerates there by improving the pack density. A tenfold improvement was achieved thus making it suitable for consolidation. Uniaxial compaction of these powders for conventional sintering at pressure below 200 MPa yielded compacts free from defects. However, at higher pressure the compacts cracks and delaminates during ejection stage. Analysis of the compaction curves helped us to understand various processes involved during compaction as well as providing explanation for lower green density of Fe-Cu powder compared to Fe. Conventional sintering of the nanopowders compacts were carried out in the flowing hydrogen atmosphere in a laboratory vacuum furnace over wide range of temperatures. Instrumented sintering experiments were also carried out in a dilatometer under hydrogen atmosphere to evaluate shrinkage rate at different temperatures. SPS were carried out under 10 Pa vacuum at a compaction pressure of 250 MPa in WC-Co die cavity. The stability, density and residual oxygen content of the sintered compacts were quantified. Detailed microstuctural analysis of the sintered samples were also carried out using optical microscopy, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, scanning transmission electron microscopy and quantitative composition analysis by EDS. Conventionally sintered compacts of both the powders showed stability only when sintered at 700°C and beyond. The maximum shrinkage/densification occured around 450°C for both the powders and the densification rate observed in Fe-Cu is three times higher than Fe. This enhanced densification in Fe-Cu is attributed to an enhanced diffusivity of Fe atoms in the transient liquid Cu layer formed at the interfaces. The microstructure of Fe-Cu is completely free from any separate oxide phase unlike in samples of Fe sintered at 700°C that contain ultrafine oxide grains. This was explained on the basis of role played by acrawax, a lubricant, admixed to increase the green density. Based on the sintered densities of both SPS and conventional sintered compacts, residual oxide content of the compacts sintered at different temperature and experimentally observed shrinkage rate a phenomenological model has been proposed for the possible sequence of processes occurring during sintering of these nanopowders.
The major findings of this work are summarized in chapter 6 and chapter 7 details the scope for the future work.
|
205 |
Modification of Carbonaceous Materials with Sulfur and Its Impact on Mercury Capture and Sorbent RegenertionMorris, Eric Adde 16 August 2013 (has links)
Physical activation of oil-sands fluid coke, a dense carbonaceous material, using sulfur dioxide (SO2) was investigated as a means of utilizing a plentiful and inexpensive waste for elemental mercury (Hg) removal. A new model was developed to elucidate physical activation of dense carbonaceous materials. Experiments and model simulations revealed that, during activation with SO2, a sulfur-rich porous layer is formed around the periphery of the coke particles; this porous layer reaches a maximum thickness as a result of diffusion limitations; the maximum porous layer thickness is controlled by activation conditions and determines the maximum achievable specific surface area (SSA). Pre-oxidation in air prior to activation, acid washing after activation and smaller coke particle size all result in higher SSA. The highest SSA achieved was 530 m2/g, the highest yet found for oil-sands fluid coke with physical activation. If present, oxygen out-competed SO2 for carbon during activation. SO2 activation and porous layer formation did not occur until oxygen was depleted. Sulfur added to coke through SO2 activation is mainly in reduced forms which are more thermally stable than elemental sulfur in commercial sulfur-impregnated activated carbons (SIACs). TGA and elemental analyses revealed that only 17% of sulfur was removed at 800°C from SO2-activated coke under inert conditions, compared with 100% from a commercial SIAC.
The role of sulfuric acid (H2SO4) in vapor Hg capture by activated carbon (AC) was studied due to conflicting findings in the recent literature. In the absence of other oxidizing species, it was found that Hg could be oxidized by oxygen which enhanced vapor Hg adsorption by AC and Hg absorption in H2SO4 solution at room and elevated temperatures. At 200°C, AC treated with 20% H2SO4 reached a Hg loading of more than 500 mg/g, which is among the highest Hg capacities yet reported. When oxygen was not present, S6+ in H2SO4 was found to act as an oxidizer of Hg, thus enabling Hg uptake by H2SO4-treated AC at 200°C. Treating the AC with SO2 at 700°C improved the initial rate of Hg uptake, with and without subsequent H2SO4 treatment.
|
206 |
Modification of Carbonaceous Materials with Sulfur and Its Impact on Mercury Capture and Sorbent RegenertionMorris, Eric Adde 16 August 2013 (has links)
Physical activation of oil-sands fluid coke, a dense carbonaceous material, using sulfur dioxide (SO2) was investigated as a means of utilizing a plentiful and inexpensive waste for elemental mercury (Hg) removal. A new model was developed to elucidate physical activation of dense carbonaceous materials. Experiments and model simulations revealed that, during activation with SO2, a sulfur-rich porous layer is formed around the periphery of the coke particles; this porous layer reaches a maximum thickness as a result of diffusion limitations; the maximum porous layer thickness is controlled by activation conditions and determines the maximum achievable specific surface area (SSA). Pre-oxidation in air prior to activation, acid washing after activation and smaller coke particle size all result in higher SSA. The highest SSA achieved was 530 m2/g, the highest yet found for oil-sands fluid coke with physical activation. If present, oxygen out-competed SO2 for carbon during activation. SO2 activation and porous layer formation did not occur until oxygen was depleted. Sulfur added to coke through SO2 activation is mainly in reduced forms which are more thermally stable than elemental sulfur in commercial sulfur-impregnated activated carbons (SIACs). TGA and elemental analyses revealed that only 17% of sulfur was removed at 800°C from SO2-activated coke under inert conditions, compared with 100% from a commercial SIAC.
The role of sulfuric acid (H2SO4) in vapor Hg capture by activated carbon (AC) was studied due to conflicting findings in the recent literature. In the absence of other oxidizing species, it was found that Hg could be oxidized by oxygen which enhanced vapor Hg adsorption by AC and Hg absorption in H2SO4 solution at room and elevated temperatures. At 200°C, AC treated with 20% H2SO4 reached a Hg loading of more than 500 mg/g, which is among the highest Hg capacities yet reported. When oxygen was not present, S6+ in H2SO4 was found to act as an oxidizer of Hg, thus enabling Hg uptake by H2SO4-treated AC at 200°C. Treating the AC with SO2 at 700°C improved the initial rate of Hg uptake, with and without subsequent H2SO4 treatment.
|
207 |
Etudes expérimentales des réactions des radicaux OH et des atomes d’oxygène d’intérêt pour l’atmosphère et la combustion / Experimental studies of the Reactions of OH radicals and Oxygen atoms of interest for the atmosphere and the combustionMorin, Julien 28 November 2016 (has links)
L’objectif de ce travail consiste à étudier, d’une part, les réactions des nitrates d’alkyles avec OH qui ont un intérêt atmosphérique, et d’autre part, les réactions des radicaux OH avec les alcanes et des atomes d’oxygène avec les oléfines qui ont un intérêt pour la combustion. Toutes les réactions ont été étudiées dans des réacteurs à écoulement à basse pression, y compris le réacteur à écoulement à haute température mis en place dans le cadre de la thèse, couplés à un spectromètre de masse quadripolaire à ionisation par impact électronique. Pour les réactions OH + nitrate d’alkyle, la dépendance en température de la constante de vitesse a été mesurée pour dix nitrates d'alkyles, dont pour huit nitrates pour la première fois, sur une large plage de température. Pour six nitrates, les produits de la voie réactionnelle menant au recyclage direct de NO₂, arrachement d’atome H de carbone α, ont été observés et leur rendements mesurés. La grande quantité de données obtenues dans ce travail a été utilisée pour une mise à jour de la relation structure-activité (SAR) pour les réactions d'alkyles nitrates avec OH et a permis d'améliorer les modèles atmosphériques actuels. Les études de réactions de radicaux OH avec les trois alcanes et de l'atome O avec l’éthylène et le propène ont permis de déterminer les constantes de vitesse respectives sur une large gamme de température allant de 220 à 900 K. De plus, la distribution des produits de réactions multivoies O + oléfine en fonction de la température a été déterminée pour la première fois. Ces résultats permettront d’améliorer les modèles de combustion actuellement utilisés. / The objective of this work was to study the reactions of alkyl nitrates with OH radicals relevant to atmosphere and reactions of OH radical with alkanes and oxygen atoms with olefins of interest for combustion chemistry. All reactions were studied in low pressure flow reactors (including high temperature flow reactor developed during the thesis) coupled to a quadrupole mass spectrometer with electron impact ionization. For OH reaction with nitrates, the temperature dependence of the rate constant was measured in an extended temperature range for ten alkyl nitrates, for eight of them for the first time. For six nitrates, the products of reaction pathway leading to direct recycling of NO₂ (H atom abstraction from α carbon) were observed and their yields were measured. The large amount of data obtained in this work has been used for an update of the structure-activity relation (SAR) for the reactions of alkyl nitrates with OH and will improve existing atmospheric models. For the reactions of OH radicals with three alkanes and O atoms with ethene and propene the rate constants were measured over a wide temperature range, 220-900 K. Moreover, the distribution of the products of the multichannel reactions O + olefin was determined as a function of temperature for the first time. These results are expected to improve current combustion models.
|
208 |
Metal-loaded graphitic carbon nitride for photocatalytic hydrogen production and the development of an innovative photo-thermal reactorCaux, Marine January 2018 (has links)
The path towards mitigation of anthropogenic greenhouse gas emissions lies in the transition from conventional to sustainable energy resources. The Hydrogen Economy, a cyclic economy based on hydrogen as a fuel, is suggested as a tool in the necessary energy transition. Photocatalysis makes use of sunlight to promote thermodynamically non-favoured reactions such as water splitting, allowing for sustainable hydrogen production. Harvesting thermal energy along with photonic energy is an interesting concept to decrease the activation energy of water splitting (i.e. ΔG = + 237.2 kJ∙mol−1). This work aims to confront this hypothesis in a gas phase photo-thermal reactor designed specifically for this study. The photocatalyst chosen is graphitic carbon nitride (g-C3N4), an organic semiconductor possessing a narrow band gap (i.e. 2.7 eV) as well as a band structure which theoretically permits water splitting. The photocatalytic performance of Pt/g-C3N4 for hydrogen evolution was tuned by altering its synthetic temperature. Electron paramagnetic resonance was used to gain insight on the evolution of the photocatalyst activity with synthesis temperature. Then, gold nanoparticles were deposited on g-C3N4 surface. Localized surface plasmon resonance properties of gold nanoparticles are reported in the literature to be influenced by temperature. Therefore Au/g-C3N4 appeared as a promising candidate for photo-thermal water splitting. X-ray spectroscopy unveiled interesting observations on the gold oxidation state. Moreover, under specific reduction conditions, gold nanoparticles with a wide variety of shapes characterized by sharp edges were formed. Finally, the development of the photo-thermal reactor is presented. The design process and the implementation of this innovative reactor are discussed. The reactor was successfully utilized to probe photoreactions. Then, the highly energy-demanding photocatalytic water splitting was proven not to be activated by temperature in the photo-thermal apparatus.
|
209 |
Flexibilités et hétérogéneités structurelles de biomolécules impliquées dans la transcription inverse du virus de l'immunodéficience humaine / Flexibility and structural heterogeneity of biomolecules involved in the reverse transcription of the human immunodeficiency virusGelot, Thomas 22 October 2012 (has links)
Le but de cette thèse est de sonder la flexibilité de NCp7 et de Δ(-)PBS, deux bio-molécules impliquées dans le second saut de brin de la transcription inverse du VIH. Deux stratégies expérimentales ont été mises en place. Un nouveau montage de spectroscopie ultra-rapide de fluorescence par down-conversion a été construit. Les dynamiques de quenching de la 2-aminopurine (2Ap), insérée en position 6, 8 et 10 de la boucle Δ(-)PBS ont pu être entièrement résolues à une résolution sub-ps. Pour chaque position, 4 temps de vie ont été révélés. Des mesures d'anisotropie confirment que les deux composantes < 5 ps sont liées à un empilement de la 2Ap avec les Guanines avoisinantes. Cet empilement est site-spécifique, prouvé par l'augmentation significative de leurs amplitudes lorsque la 2Ap est située près de la tige (position 10). La faible proportion de conformations reliées à un quenching collisionnel est significative de la faible exposition des 2Ap au solvant et de l'encombrement général de la boucle. La seconde approche avait pour but d'étudier l'effet du repliement du squelette protéique de [35-50] NCp7 autour de son atome de zinc par CID et par LID. Les spectres CID de la protéine nue sont expliqués par le modèle du proton mobile et une description détaillée d'un schéma de fragmentation spécifique autour du Tryptophane (Trp) a été soulignée, attribué une Lysine voisine. Un seul fragment issu de l'excitation à 266 nm a été identifié, son apparition entre en compétition avec les fragments CID du Trp. L'effet général du repliement autour du Zinc se traduit par une augmentation du taux de fragmentation autour du Trp et par une perte de spécificité pour le reste du spectre.Les flexibilités de Δ(-)PBS et NCp7 ont été respectivement évaluées par spectroscopie ultra-rapide de type down-conversion et par spectrométrie en phase gazeuse. La première méthode nécessite l'utilisation d'une sonde fluorescente non invasive, la 2-aminopurine (2Ap), placée en position 6, 8 et 10 de la boucle Δ(-)PBS. Notre résolution temporelle permet de résoudre entièrement les dynamiques locales de quenching et d'anisotropie de la 2Ap. Les composantes liées au quenching statique et quenching collisionnel ont été discriminées et révèlent les degrés d'empilement / encombrement locaux de la boucle. L'effet du repliement de [35-50] NCp7 autour de son atome de zinc a été étudié par CID et par LID à 266 nm. La protéine nue présente un interessant shéma de fragmentation autour du Tryptophane (Trp), exalté par la complexation avec le zinc, au prix une perte de spécificité pour le reste du spectre. Un seul fragment LID a été identifié, un mécanisme de sa formation est proposé. / This thesis aims to probe the flexibility of NCp7 and Δ(-)PBS, two biomolecules involved in the second strand transfer of the HIV's reverse transcription. We brought to the front two original experimental methods. A new ultrafast fluorescence down-conversion setup has been built, suitable for biological chromophore investigations. The quenching dynamics of 2-aminopurine (2Ap), site-mutated at the positions 6, 8 and 10 of Δ(-)PBS loop, were completely resolved under a ps scale. For each location, 4 decay times, were highlighted. Further anisotropy measurements confirmed that the two < 5 ps components correspond to stacking interactions of 2Ap with neighbouring Guanines. The site-specific aspect of the stacking were supported by a significant increase of their relative amplitudes when 2Ap were cloesly located to the stem (position 10). The minor portion of conformations involved with ps to ns collisional quenching suggests a low exposure of 2Ap towards the solvent as well as a general restriction of the loop. The second method planned to investigate the effet of the zinc-folding on [35-50] NCp7's peptidic backbone, thanks to CID and LID. The CID-generated spectra of the bare peptide were explained by the mobile proton model, and an exhaustive tryptophan (Trp) fragmentation pattern was described, mainly due to a neighbouring Lysin effects. Only one LID-fragment has been identified upon 266 nm excitation, probably created through a pathway competing with the generation of Trp fragments by CID. The main aspects related to zinc-folding are a general enhancement of the fragmentation ratios related to Trp and a loss of specificity for the remaining mass spectra parts.Δ(-)PBS et NCp7 has been respectively investigated by ultrafast down-conversion spectroscopy and gas-phase spectrometry. The first method implies the use of a non invasive fluorescent probe, named 2 aminopurine (2Ap), site mutated in position 6, 8 et 10 of the Δ(-)PBS loop. Our time resolution allows to fully depict the local quenching dynamics and anisotropy decays. The component related to static and collisional has been solved, thus describing different stacking degrees as well as local restrictions. The effect of [35-50] NCp7 folding around its zinc atom has been studied by CID and 266 nm LID. The bare protein displays an interesting fragmentation pathway around its Tryptophan (Trp), enhanced with zinc complexation, at the cost of a loss of specificity for the remaining mass spectra parts. Only one LID fragment has been identified, its occurence has been interpreted.
|
210 |
Estudo da influ?ncia da temperatura na degrada??o termoqu?mica da biomassa de avel?sAvelar, Karen Pereira Batista de 18 October 2013 (has links)
Made available in DSpace on 2014-12-17T15:01:32Z (GMT). No. of bitstreams: 1
KarenPBA_DISSERT.pdf: 3887883 bytes, checksum: 3ebc4a634530a0a4a6493a962284d14f (MD5)
Previous issue date: 2013-10-18 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The bio-oil obtained from the pyrolysis of biomass has appeared as inter-esting
alternative to replace fossil fuels. The aim of this work is to evaluate the influence of
temperature on the yield of products originating from the pyrolysis process of the powder
obtained from the dried twigs of avel?s (Euphorbia tirucalli), using a rotating cylinder
reactor in laboratory scale. The biomass was treated and characterized by: CHNS,
moisture, volatiles, fixed carbon and ashes, as well as evaluation of lignin, cellulose and
hemicellulose, besides other instrumental techniques such as: FTIR, TG/DTG, DRX,
FRX and MEV. The activation energy was evaluated in non-isothemichal mode with
heating rates of 5 and 10 oC/min. The obtained results showed biomass as feedstock
with potential for biofuel production, because presents a high organic matter content
(78,3%) and fixed-carbon (7,11%). The activation energy required for the degradation
of biomass ranged between 232,92 392,84 kJ/mol, in the temperature range studied
and heating rate of 5 and 10?C/min. In the pyrolysis process, the influence of the reaction
temperature was studied (350-520 ? C), keeping constant the other variables, such
as, the flow rate of carrier gas, the centrifugal speed for the bio-oil condensationa, the
biomass flow and the rotation of the reactor. The maximum yield of bio-oil was obtained
in the temperature of 450?C. In this temperature, the results achieved where: content
of bio-oil 8,12%; char 32,7%; non-condensed gas 35,4%; losts 23,8%; gross calorific
value 3,43MJ/kg; pH 4,93 and viscosity 1,5cP. The chromatographic analysis of
the bio-oil produced under these conditions shows mainly the presence of phenol
(17,71%), methylciclopentenone (10,56%) and dimethylciclopentenone (7,76%) / O bio-?leo obtido da pir?lise da biomassa tem aparecido como alternativa
interessante para substitui??o dos combust?veis f?sseis. O objetivo deste trabalho ? avaliar
a influ?ncia da temperatura no rendimento dos produtos originados do processo de
pir?lise do p? obtido dos galhos secos do avel?s (Euphorbia tirucalli), utilizando um
reator de cilindro rotativo em escala de laborat?rio. A biomassa foi tratada e caracterizada
por: CHNS, umidade, materiais vol?teis, cinzas e carbono fixo, bem como, avalia??o
dos teores de lignina, celulose e hemicelulose, al?m de outras t?cnicas instrumentais,
tais como: FTIR, TG/DTG, DRX, FRX e MEV. A energia de ativa??o foi avaliada
no regime n?o isot?rmico com taxas de aquecimento de 5 e 10 oC/min. Os resultados
obtidos mostraram a biomassa como mat?ria prima com potencial para produ??o de biocombust?veis,
pois apresenta alto teor de mat?ria org?nica (78,3%) e carbono fixo
(7,11%). A energia de ativa??o exigida para degrada??o da biomassa variou entre
232,92 392,84 kJ/mol, no intervalo de temperatura da rea??o estudado e taxa de aquecimento
de 5 e 10oC/min. No processo de pir?lise, estudou-se a influ?ncia da temperatura
da rea??o (350-520 ?C), mantendo-se constantes as demais vari?veis, ou seja, a vaz?o
do g?s de arraste , a velocidade de centrifuga??o para condensa??o do bio-?leo, a vaz?o
de biomassa e a rota??o do reator. O rendimento m?ximo em bio-?leo foi obtido na
temperatura de 450?C. Nessa temperatura, os resultados alcan?ados foram: teor de bio?leo
de 8,12%; carv?o 32,7%; fase gasosa n?o condensada 35,4%; perdas 23,8%; poder
calor?fico superior 3,43MJ/kg; pH 4,93; viscosidade 1,5cP. A an?lise cromatogr?fica do
bio-?leo produzido nessas condi??es mostra a presen?a, principalmente, de fenol
(17,71%), metilciclopentenona (10,56%) e dimetilciclopentenona (7,76%)
|
Page generated in 0.0335 seconds