Spelling suggestions: "subject:"GFRP cars"" "subject:"GFRP bars""
11 |
Análise teórica e experimental do comportamento da aderência entre o concreto e barras de fibra de vidro impregnada por polímero / Analytical and experimental analysis of bond behavior between concrete and GFRP barsIara Andrade Couto 29 June 2007 (has links)
O uso de novos materiais na construção civil combinado com a alta tecnologia dos processos construtivos pode conduzir à redução de custo e melhoria no comportamento da estrutura. Recentemente, em função da corrosão das barras de aço dentre outros fatores, muitos pesquisadores têm sugerido a utilização de barras não-metálicas como substituição das barras aço nas estruturas em concreto. Além das barras não-metálicas permitirem cobrimentos menores e possibilitarem menor custo de manutenção, outras vantagens no seu uso podem ser citadas, tais como: pequeno peso específico, alta resistência à tração, não condutibilidade elétrica, térmica e magnética, entre outras. Este trabalho analisa o comportamento da aderência entre barras de GFRP (barras de fibra de vidro impregnada por polímero) e o concreto, por meio de uma revisão bibliográfica e ensaios de arrancamento padronizados, segundo o RILEM-FIP-CEB (1973). Foram consideradas as influências dos parâmetros como a resistência à compressão do concreto e o diâmetro da barra de GFRP. Com base nos resultados experimentais, buscou-se comparar o comportamento de aderência barra de GFRP-concreto e barra de aço-concreto, além da verificação das formulações para previsão da resistência de aderência segundo códigos normativos e a literatura técnica, para estruturas armadas com barras de aço e barras de FRP. Posteriormente, realizou-se a análise numérica da aderência, por meio do método dos elementos finitos. Nos modelos experimentais de arrancamento pode-se perceber a influência das propriedades mecânicas e da conformação superficial das barras de GFRP no comportamento da aderência, apresentando menores resistências de aderência quando comparadas às barras de aço de diâmetro similar. O valor da resistência de aderência determinado experimentalmente foi maior que o valor proposto pelos códigos normativos. Os modelos numéricos não representaram satisfatoriamente o comportamento experimental, visto que se trata de uma simulação numérica linear e o comportamento experimental força x deslocamento é não-linear. / The use of new materials in civil construction combined with high technology processes leads to improvements in many aspects, like cost reductions and better structural behavior. Recently, due to corrosion of the steel bars, among other factors, many researchers have been suggesting the use of non-metallic bars as a substitution of the steel reinforcement in concrete structures. Besides, the non-metallic bars allow smaller clear cover and make possible lower maintenance cost, other advantages can be mentioned, such as: low specific weight, high tensile strength, electrical, thermal and magnetic non-conductivities, and others. This work analyzes the bond behavior between GFRP bars (Glass Fiber Reinforced Polymer bars) and concrete, through state-of-art and standard pull-out tests, according to RILEM-FIP-CEB (1973). The influence of some parameters, as compressive concrete strength and GFRP bar diameter, was considered. Based on the experimental results, it was aimed at comparing the bond behavior of the GFRP-concrete bar with the steel-concrete bar, in addition to the verification of bond strength formulations established by the standards codes and the bibliography for structures reinforced with steel bars and FRP bars. Further, the bond numerical analysis was carried out through finite elements. In the pull-out tests, the influence of mechanical properties and superficial conformation on the GFRP bars was observed in the bond behavior, presenting smaller bond strength than the steel bars of similar diameter. The value of the experimental bond strength was larger than the value proposed by standards codes. The numerical models did not represent well the experimental behavior given that a linear numerical simulation was considered, but, actually, the experimental load x slip behavior is non-linear.
|
12 |
[pt] MECANISMOS DE RESISTÊNCIA AO CORTANTE EM VIGAS DE CONCRETO ARMADO COM BARRAS DE PRFV E FIBRAS DE BASALTO / [en] SHEAR STRENGTH MECHANISMS IN REINFORCED CONCRETE BEAMS WITH GFRP BARS AND BASALT FIBERSTHIAGO ANDRADE GOMES 08 June 2022 (has links)
[pt] O comportamento de vigas de concreto armado com barras de polímero reforçado com fibras de vidro (PRFV) submetidas ao esforço cortante tem diferenças quando comparada ao tradicional uso de armaduras de aço. O relativo baixo módulo de elasticidade e menor resistência ao carregamento transversal de barras de PRFV alteram a ação dos mecanismos de resistência e cinemática da fissura crítica ao cortante. Nesse contexto, a aplicação de fibras dispersas na matriz de concreto se coloca como uma possibilidade para buscar a redução da flexibilidade desse tipo de elemento. Sendo assim, este trabalho investiga o comportamento experimental de quatro vigas de concreto armado com barras de PRFV sem e com estribos e fibras de basalto. Utilizando-se da técnica de Correlação de Imagem Digital (CID), os campos de deslocamentos do vão de ruptura foram mapeados e, por meio de modelos constitutivos dos
mecanismos resistentes à força cortante disponíveis na literatura, analisou-se o comportamento resistente das vigas. A quantificação de resistência através dos modelos constitutivos apresentou uma satisfatória correlação com os resultados experimentais. Além disso, a análise possibilitou uma melhor compreensão
da contribuição dos mecanismos resistentes em diferentes estágios de carregamento. / [en] The shear behavior of reinforced concrete beams with Glass Fiber Reinforced Polymer Bars (GFRP) has differences when compared to traditional steel reinforcement. The relative low modulus of elasticity and the lower resistance to transverse loading of GFRP bars change the resistance mechanisms
and kinematics of the critical shear crack. In this context, the application of dispersed fibers in the concrete matrix may be used to try to reduce the flexibility of this type of element. Therefore, this work investigates the experimental behavior of four reinforced concrete beams with GFRP bars with and without
stirrups and basalt fibers. By using Digital Image Correlation (DIC) technique, the displacement fields of the failure span were mapped and, by means of constitutive models of the shear resistant mechanisms available in the literature, the resistant behavior of the beams was analyzed. The evaluation of resistance
mechanisms through the constitutive models showed a satisfactory correlation with the experimental results. In addition, the analysis provided a better understanding of the contribution of each resistant mechanisms at different stages of loading.
|
13 |
GFRP-reinforced concrete columns under simulated seismic loading / Colonnes en béton armé renforcées de PRFV sous un chargement sismique simuléMohammed, Mohammed Gaber Elshamandy January 2017 (has links)
Abstract : Steel and fiber-reinforced-polymer (FRP) materials have different mechanical and physical characteristics. High corrosion resistance, high strength to weight ratio, non-conductivity, favorable fatigue enable the FRP to be considered as alternative reinforcement for structures in harsh environment. Meanwhile, FRP bars have low modulus of elasticity and linear-elastic stress-strain curve. These features raise concerns about the applicability of using such materials as reinforcement for structures prone to earthquakes. The main demand for the structural members in structures subjected to seismic loads is dissipating energy without strength loss which is known as ductility. In the rigid frames, columns are expected to be the primary elements of energy dissipation in structures subjected to seismic loads.
The present study addresses the feasibility of reinforced-concrete columns totally reinforced with glass-fiber-reinforced-polymer (GFRP) bars achieving reasonable strength and the drift requirements specified in various codes. Eleven full-scale reinforced concrete columns—two reinforced with steel bars (as reference specimens) and nine totally reinforced with GFRP bars—were constructed and tested to failure. The columns were tested under quasi-static reversed cyclic lateral loading and simultaneously subjected to compression axial load. The columns are 400 mm square cross-section with a shear span 1650 mm. The specimen simulates a column with 3.7 m in height in a typical building with the point of contra-flexure located at the column mid-height. The tested parameters were the longitudinal reinforcement ratio (0.63, 0.95 and 2.14), the spacing of the transverse stirrups (80, 100, 150), tie configuration (C1, C2, C3 and C4), and axial load level (20%, 30% and 40%).
The test results clearly show that properly designed and detailed GFRP-reinforced concrete columns could reach high deformation levels with no strength degradation. An acceptable level of energy dissipation compared with steel-reinforced concrete columns is provided by GFRP reinforced concrete columns. The dissipated energy of GFRP reinforced concrete columns was 75% and 70% of the counter steel columns at 2.5% and 4% drift ratio respectively. High drift capacity achieved by the columns up to 10% with no significant loss in strength. The high drift capacity and acceptable dissipated energy enable the GFRP columns to be part of the moment resisting frames in regions prone to seismic activities. The experimental ultimate drift ratios were compared with the estimated drift ratios using the confinement Equation in CSA S806-12. It was found from the comparison that the confinement Equation underestimates values of the drift ratios thus the experimental drift ratios were used to modify transverse FRP reinforcement area in CSA S806-12. The hysteretic behavior encouraged to propose a design procedure for the columns to be part of the moderate ductile and ductile moment resisting frames. The development of design guidelines, however, depends on determining the elastic and inelastic deformations and on assessing the force modification factor and equivalent plastic-hinge length for GFRP-reinforced concrete columns. The experimental results of the GFRP-reinforced columns were used to justify the design guideline, proving the accuracy of the proposed design equations. / L’acier et les matériaux à base de polymères renforcés de fibres (PRF) ont des caractéristiques physiques et mécaniques différentes. La résistance à la haute corrosion, le rapport résistance vs poids, la non-conductivité et la bonne résistance à la fatigue font des barres d’armature en PRF, un renforcement alternatif aux barres d’armature en acier, pour des structures dans des environnements agressifs. Cependant, les barres d’armature en PRF ont un bas module d’élasticité et une courbe contrainte-déformation sous forme linéaire. Ces caractéristiques soulèvent des problèmes d'applicabilité quant à l’utilisation de tels matériaux comme renforcement pour des structures situées en forte zone sismique. La principale exigence pour les éléments structuraux des structures soumises à des charges sismiques est la dissipation d'énergie sans perte de résistance connue sous le nom de ductilité. Dans les structures rigides de type cadre, on s'attend à ce que les colonnes soient les premiers éléments à dissiper l'énergie dans les structures soumises à ces charges.
La présente étude traite de la faisabilité des colonnes en béton armé entièrement renforcées de barres d’armature en polymères renforcés de fibres de verre (PRFV), obtenant une résistance et un déplacement latéral raisonnable par rapport aux exigences spécifiées dans divers codes. Onze colonnes à grande échelle ont été fabriquées: deux colonnes renforcées de barres d'acier (comme spécimens de référence) et neuf colonnes renforcées entièrement de barres en PRFV. Les colonnes ont été testées jusqu’à la rupture sous une charge quasi-statique latérale cyclique inversée et soumises simultanément à une charge axiale de compression. Les colonnes ont une section carrée de 400 mm avec une portée de cisaillement de 1650 mm pour simuler une colonne de 3,7 m de hauteur dans un bâtiment typique avec le point d’inflexion situé à la mi-hauteur. Les paramètres testés sont : le taux d’armature longitudinal (0,63%, 0,95% et 2,14 %), l'espacement des étriers (80mm, 100mm, 150 mm), les différentes configurations (C1, C2, C3 et C4) et le niveau de charge axiale (20%, 30 % et 40%).
Les résultats des essais montrent clairement que les colonnes en béton renforcées de PRFV et bien conçues peuvent atteindre des niveaux de déformation élevés sans réduction de résistance. Un niveau acceptable de dissipation d'énergie, par rapport aux colonnes en béton armé avec de l’armature en acier, est atteint par les colonnes en béton armé de PRFV. L'énergie dissipée des colonnes en béton armé de PRFV était respectivement de 75% et 70% des colonnes en acier à un rapport déplacement latéral de 2,5% et 4%. Un déplacement supérieur a été atteint par les colonnes en PRFV jusqu'à 10% sans perte significative de résistance. La capacité d’un déplacement supérieur et l’énergie dissipée acceptable permettent aux colonnes en PRFV de participer au moment résistant dans des régions sujettes à des activités sismiques. Les rapports des déplacements expérimentaux ultimes ont été comparés avec les rapports estimés en utilisant l’Équation de confinement du code CSA S806-12. À partir de la comparaison, il a été trouvé que l’Équation de confinement sous-estime les valeurs des rapports de déplacement, donc les rapports de déplacement expérimentaux étaient utilisés pour modifier la zone de renforcement transversal du code CSA S806-12. Le comportement hystérétique encourage à proposer une procédure de conception pour que les colonnes fassent partie des cadres rigides à ductilité modérée et résistant au moment. Cependant, l'élaboration de guides de conception dépend de la détermination des déformations élastiques et inélastiques et de l'évaluation du facteur de modification de la force sismique et de la longueur de la rotule plastique pour les colonnes en béton armé renforcées de PRFV. Les résultats expérimentaux des colonnes renforcées de PRFV étudiées ont été utilisés pour justifier la ligne directrice de conception, ce qui prouve l’efficacité des équations de conception proposées.
|
14 |
Assessment of strength, stiffness, and deformation capacity of concrete squat walls reinforced with GFRP bars / Évaluation de la résistance, la rigidité et la capacité en déformation des voiles courts en béton armé d’armature en PRFVArafa, Ahmed January 2017 (has links)
Abstract : The present study addressed the feasibility of reinforced-concrete squat walls totally reinforced with GFRP bars to attain reasonable strength and drift requirements as specified in different codes. Nine large-scale squat walls with aspect ratio (height to length ratio) of 1.33—one reinforced with steel bars (as reference specimen) and eight totally reinforced with GFRP bars—were constructed and tested to failure under quasi-static reversed cyclic lateral loading. The key studied parameters were: (1) use of bidiagonal web reinforcement; (2) use of bidiagonal sliding reinforcement; and (3) web reinforcement configuration (horizontal and/or vertical) and ratio. The reported test results clearly revealed that GFRP-reinforced concrete (RC) squat walls have a satisfactory strength and stable cyclic behavior as well as self-centering ability that assisted in avoiding sliding shear that occurred in the companion steel-reinforced wall following steel yielding. The results are promising regarding using GFRP-reinforced squat walls in areas prone to seismic risk where environmental conditions are adverse to steel reinforcement. Bidiagonal web reinforcement was shown to be more effective than conventional web reinforcement in controlling shear-cracks width. Using bidiagonal sliding reinforcement was demonstrated to be not necessary to prevent sliding shear. The horizontal web reinforcement ratio was found to have a significant effect in enhancing the ultimate strength and deformation capacity as long as the failure is dominant by diagonal tension. Existence of both horizontal and vertical web reinforcement was shown to be essential for cracks recovery. Assessment of the ultimate strengths using the available FRP-reinforced elements code and guidelines (CSA S806-12 and ACI 440.1R-15) was conducted and some recommendations were proposed to attain a reasonable estimation of ultimate strengths. Given their importance in estimating the walls’ later displacement, the effective flexural and shear stiffness of the investigated walls were evaluated. It was found that the cracked shear stiffness could be estimated based on the truss model; while the flexural stiffness can be estimated based on the available expressions in FRP-reinforced elements codes and guidelines. Based on a regression analysis, a simple model that directly correlates the flexural and shear stiffness degradation of the test walls to their top lateral drift was also proposed. / Résumé : La présente étude traite de la faisabilité de voiles courts en béton armé totalement renforcés avec des barres de polymères renforcés de fibres de verre (PRFV), obtenant une résistance et un déplacement latéral raisonnable par rapport aux exigences spécifiées dans divers codes. Neuf voiles à grande échelle ont été construits: un renforcé avec des barres d'acier (comme spécimen de référence) et huit renforcés totalement avec des barres de PRFV. Les voiles ont été testés jusqu’à la rupture sous une charge quasi-statique latérale cyclique inversée. Les voiles ont une hauteur de 2000 mm, une largeur de 1500 mm (élancement 2000 mm/1500 mm = 1,33) et une épaisseur de 200 mm. Les paramètres testés sont : 1) armature bi-diagonale dans l’âme; 2) armature bi-diagonale dans l’encastrement du mur à la fondation (zone de glissement); 3) configuration d’armature verticale et horizontale réparties dans l’âme et taux d’armature. Les résultats des essais ont clairement montré que les voiles courts en béton armé de PRFV ont une résistance satisfaisante et un comportement cyclique stable ainsi qu'une capacité d'auto-centrage qui ont aidé à éviter la rupture par glissement à l’encastrement (sliding shear). Ce mode de rupture (sliding shear) s’est produit pour le voile de référence armé d’acier après la plastification de l’armature. Les résultats sont prometteurs concernant l'utilisation de voiles en béton armé de PRFV dans les régions sismiques dans lesquelles les conditions environnementales sont défavorables à l’armature d’acier (corrosion). L’armature bi-diagonale en PRFV dans l’âme s’est avérée plus efficace pour le contrôle des largeurs de fissures de cisaillement comparativement à l’armature répartie dans l’âme. L'utilisation d'un renforcement de cisaillement bi-diagonal a été démontrée comme n'étant pas nécessaire dans les voiles courts en béton armé de PRFV pour prévenir la rupture par glissement à l’encastrement (shear sliding). Par ailleurs, les résultats d’essais ont montré que le taux d’armature horizontale répartie dans l’âme a un effet significatif sur l’augmentation de la résistance et la capacité en déformation des voiles dont la rupture par effort tranchant se fait par des fissures diagonales (tension failure). L'existence d’armature verticale et horizontale répartie dans l’âme du voile en béton armé de PRFV s'est révélée essentielle pour l’ouverture et la fermeture des fissures au cours des chargements cycliques. Les normes calcul CSA S806-12 et ACI 440.1R-15 ont été utilisées pour évaluer la résistance au cisaillement des voiles courts en béton armé de PRFV. Certaines recommandations ont été proposées pour obtenir une estimation raisonnable des forces ultimes. Compte tenu de leur importance dans l'estimation du déplacement latérale des voiles, la rigidité effective en flexion et en cisaillement des voiles étudiés a été évaluée. On a constaté que la raideur de cisaillement du béton fissuré pourrait être estimée en utilisant le modèle de treillis. La rigidité à la flexion peut être, quant à elle, estimée en fonction des expressions disponibles dans les normes et les guides de conception de membrures en béton armé avec des barres en PRFV. Sur la base d'une analyse de régression, un modèle simple qui corrèle directement la dégradation de la rigidité en flexion et en cisaillement des voiles courts en béton armé de PRFV testés avec le déplacement latérale dans la partie supérieure des voiles a également été proposé.
|
Page generated in 0.0502 seconds