• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 13
  • 8
  • 5
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 68
  • 31
  • 24
  • 24
  • 17
  • 16
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Interactions between the GLUT4 Glucose Transporter and Its Regulator, TUG

Mansourian, Stefan V. 04 March 2008 (has links)
The glucose transporter 4 (GLUT4) is the major insulin-responsive glucose transporter in adipose and muscle tissues. Although the early steps in the insulin signaling pathway governing translocation of GLUT4 to the plasma membrane are well understood, the final steps in this pathway are not. TUG is a protein which has been shown to affect trafficking of GLUT4 both in the basal state and in response to insulin. One protein-protein interaction between TUG and the large cytosolic loop of GLUT4 has previously been identified. Based on reports of the requirement of the GLUT4 N-terminal domain for its proper targeting to the plasma membrane, we postulated that an interaction might also exist between TUG and the N-terminal domain of GLUT4, and we tested this hypothesis using two sets of pull-down experiments. In the first set, using the N-terminal domain of GLUT4 fused with glutathione S-transferase (GST), we were able to pull TUG down from the lysates of TUG-transfected HEK 293 cells. TUG was also pulled down by the GLUT4 cytosolic loop and, to a much lesser extent, its C-terminal domain. However, there was no specific interaction between these fusion proteins and the lysates of cells transfected with a truncated form of TUG lacking its own N-terminal domain. In the second set of experiments, using a biotinylated synthetic GLUT4 N-terminal peptide, we pulled down a protein detected by an anti-TUG antibody and running at ~64 kDa, a slightly higher molecular weight than wild-type TUG. We believe that this band represents modified full-length TUG. This interaction was not seen using synthetic GLUT4 N-terminal peptide mutated at 4 amino acids previously identified as necessary for proper GLUT4 retention and insulin-responsive trafficking. We conclude that TUG interacts not only with the large cytosolic loop of GLUT4, but also with the N-terminal domain of GLUT4, and that this latter interaction can be disrupted by mutations in GLUT4 that cause defective trafficking, suggesting that this interaction is critical for GLUT4 intracellular retention and insulin-responsive GLUT4 trafficking.
22

Co-Transcriptional Splicing and Functional Role of PKCβ in Insulin-Sensitive L6 Skeletal Muscle Cells and 3T3-L1 Adipocytes

Kleiman, Eden 29 September 2009 (has links)
PKC βII is alternatively spliced during acute insulin stimulation in L6 skeletal muscle cells. This PKC βII isoform is critical in propagating GLUT4 translocation. PKC β protein and promoter dysfunction correlate with human insulin resistance. TZD treatment ameliorates whole-body insulin-resistance. Its primary target is adipocyte PPAR γ, which it activates upon binding. This causes both altered circulating serum FFA concentrations and adipokine secretion profile. How TZDs affect the intracellular signaling of skeletal muscle cells is unknown. RT-PCR and Western blot analysis showed that TZDs elevated PKC βII by a process that involves co-transcriptional splicing. PGC1 α overexpression most closely resembled TZD treatment by increasing PKCβII protein levels and keeping PKC βI levels relatively constant. Use of a heterologous PKCβ promoter driven PKC β minigene demonstrated that PPARγ could regulate the PKCβ promoter, but whether this is direct or indirect is unclear. SRp40 splicing factor has been shown to dock onto the PGC1 α CTD and influence splicing. SRp40, through overexpression and silencing, appears to play a part in PKC β promoter regulation. PKC β promoter regulation was also studied in 3T3-L1 cells. TZDs were experimentally shown to have no role in PKC β promoter regulation despite PPARγ activation. Chromatin immunoprecipitation assays revealed PU.1 as a putative PKC β transcription factor that can cross-talk with the spliceosome, possibly through SRp40 which was also associated with the PKC β promoter. 3T3-L1 adipocyte differentiation revealed a novel developmentally-regulated switch from PKC βI to PKCβ II, using western blot and Real-Time PCR analysis. Pharmacological inhibition of PKC β II using CGP53353 and LY379196 blocked [ 3 H]2-deoxyglucose uptake and revealed a functional role for PKC β II in adipocyte ISGT. CGP53353 specifically inhibited phosphorylation of PKC β II Serine 660 and not other critical upstream components of the insulin signaling pathway. Subcellular fractionation and PM sheet assay pointed to PKC β II-mediated regulation of GLUT4 translocation to the PM. Co-immunoprecipitation between PKC β II and GLUT4 allude to possible direct interaction. Western blot and immunofluorescence assays show PKC β II activity is linked with Akt Serine 473 phosphorylation, thus full Akt activity. Western blot and co-immunoprecipitation suggested that insulin caused active mTORC2 to directly activate PKC βII. Data support a model whereby PKCβ II is downstream of mTORC2 yet upstream of Akt, thereby regulating GLUT4 translocation.
23

IRF3 is a Critical Regulator of Adipose Glucose and Energy Homeostasis

Wang, Xun 06 October 2014 (has links)
Obesity is associated with a state of chronic inflammation, which is believed to contribute to insulin resistance. We previously identified interferon regulatory factor 3 (IRF3) as an anti-adipogenic transcription factor with high expression in adipocytes. Because IRF3 is known to drive expression of pro-inflammatory genes in immune cells, we hypothesized that it may also promote inflammation and insulin resistance in adipocytes. Consistent with our expectations, we found that the expression of inflammatory genes in adipocytes was induced by IRF3 overexpression, while knockdown of IRF3 had the opposite effect. Despite this effect on local adipocyte gene expression, we found that \(Irf3^{-/-}\) mice did not show evidence of altered systemic inflammation. Nonetheless, \(Irf3^{-/-}\) mice did display altered metabolism relative to their wild type (WT) littermates. For example, high fat diet (HFD) fed \(Irf3^{-/-}\) mice exhibited increased lean mass and decreased fat mass compared to WT, accompanied by increased food intake and energy expenditure. Further investigation showed that the white adipose tissue (WAT) of \(Irf3^{-/-}\) mice had increased expression of brown adipocyte selective genes compared to WT, and the inguinal WAT of the \(Irf3^{-/-}\) mouse contain multilocular adipocytes that resemble brown adipocytes. These data suggest that IRF3 affects energy homeostasis by regulating the development of brown adipocyte-like cells in WAT. Additionally, \(Irf3^{-/-}\) mice are significantly more insulin sensitive and glucose tolerant compared to WT when kept on HFD. Consistent with in vivo observations, IRF3 knockdown in 3T3-L1 adipocytes resulted in enhanced insulin-stimulated glucose uptake and lipogenesis, while overexpression of constitutively active IRF3 had the opposite effect. Several IRF3 target genes in adipocytes were identified using transcriptional profiling. Interestingly, the expression level of Slc2a4 (encoding the Glut4 protein) was inversely correlated with that of IRF3 in both WAT and cultured adipocytes. Analysis of the Slc2a4 proximal promoter identified a putative IRF3 binding site upstream of the transcription start site, and luciferase assay in 3T3-L1 adipocytes showed that IRF3 negatively regulates Slc2a4 expression via this site. Taken together, these data indicate that IRF3 plays a role in whole body glucose homeostasis by repressing thermogenic gene expression as well as the expression of adipose Glut4.
24

Characterization of mechanisms of myocardial remodeling in genetic models of cardiac hypertrophy

Domenighetti, Andrea A. Unknown Date (has links) (PDF)
Cardiac hypertrophy is clinically defined as a relative increase in heart size associated with a thickening of the ventricular wall. It is a common feature of individuals suffering from different cardio-vascular or metabolic conditions and leads to heart failure. The structural, functional and molecular mechanisms which induce hypertrophy independent of hemodynamic alterations are poorly characterized. In this study, questions about whether cardiac-specific neuro-endocrine activation or metabolic imbalance are sufficient to induce hypertrophic structural and functional remodeling are addressed using genetically manipulated mouse models of primary cardiac hypertrophy. (For complete abstract open document)
25

The effects of metformin on immune cell function in prediabetic patients

Persky, Leah B. 02 November 2017 (has links)
OBJECTIVE: T2D is a metabolic disease that is a significant health problem throughout many populations. Increased incidence of T2D across the age spectrum makes preventive measures for this disease a top healthcare priority. Physiological changes such as expression of pro-inflammatory T cell cytokines, insulin resistance, and pancreatic beta cell dysfunction play major roles in the onset of T2D. Current treatments include lifestyle changes with oral medications and/or synthetic insulin therapy. While treatments aim to normalize blood glucose and increase insulin sensitivity in patients diagnosed with T2D, efforts are growing to find preventative therapies for prediabetes, a condition where blood glucose levels are higher than normal but are under the threshold determined for a diabetes diagnosis. Metformin, a well-known first-line recommendation for treating T2D, in conjunction with lifestyle modification may be a viable preventative measure to delay the onset of T2D. Previous study results have created momentum to generate data promoting metformin use as an off-label preventative drug for T2D. To identify a therapeutic intervention that may help to shift T cell cytokine profiles from being pro-inflammatory and diabetogenic to anti-inflammatory, we investigated the effects of metformin on immune cell function in prediabetic patients. It is known that one effect of metformin is activating AMPK, which secondarily decreases inflammation. We therefore hypothesized metformin affects immune cell function by modulating genes in the AMPK pathway. METHODS: We recruited 49 subjects using EPIC database to screen patients with appointments at the Nutrition and Weight Management Center at Boston Medical Center. Forty-nine pre-metformin and 13 post- metformin blood samples were collected from subjects at baseline and after three months of taking metformin, respectively. Ficoll was utilized to separate and extract PBMCs. I activated PBMCs with LPS or CpG for 24 hours, and anti-CD3/CD28 for 24 or 40 hours. Then I isolated and reverse transcribed RNA, producing cDNA. We ran a human AMPK signaling qRT-PCR array on the 40-hour anti-CD3/CD28 activated PBMCs from 4 randomly chosen subjects and analyzed data to investigate candidate targets in the AMPK pathway possibly modulated by metformin. I designed primers for six chosen targets and ran qRT-PCR comparing the pre- and post-metformin dataset of 13 subjects, using the generated human gene-specific primers to see if these genes were affected across the dataset. RESULTS: Total sample population was n=13. The majority of subjects were African American females. The study participants were considered prediabetic when A1C measured between 5.7-6.4%. Median A1C and BMI averaged at 5.8% and 38.6 kg/m2  2.48 (mean  SEM), respectively. There was an expected decrease in BMI as metformin is associated with weight loss. To understand how metformin may affect genes in the AMPK pathway, qRT-PCR array analysis of the 40-hour anti-CD3/CD28 activated PBMCs in a subset of 4 subjects was used to create a volcano plot. The plot demonstrated that out of the possible gene candidates, SLC2A4, LIPE, INSR, CRY1, GAPDH, and STK11 had the greatest log2 fold change and –log (p-value). Further analysis on the 4 subjects compared delta Ct values and relative gene expression showing CRY1, a circadian function gene, had a significant decrease in expression (p=0.03, n=4, paired t-test). Primers were designed for the six candidate genes and used to run qRT-PCR on the entire dataset of 13 subjects. There was a significant decrease in expression of STK11 in 24-hour non-stimulated PBMCs (p=0.008, n=12, paired t-test) and CRY1 in 24-hour anti-CD3/CD28 activated PBMCs (p=0.04, n=12, paired t-test). There was a significant increase in expression of SLC2A4 in 24-hour CpG activated PBMCs (p=0.02, n=12, paired t-test). Furthermore, GLUT4 was detected in CpG activated immune cells and gene expression was increased in cells from subjects post-metformin treatment. CONCLUSIONS: Further investigation is required to examine how metformin decreases the expression of CRY1 and how this decrease associates with pro-inflammatory cytokine expression. STK11 expression was decreased in non-stimulated cells but did not show any trend in the activated conditions. Additional research is warranted to see if these results can be repeated, and if so, more work will be needed to define the link between CRY1/STK11 and metformin-driven AMPK activation in immune cells. Protein expression analysis will be required to support our gene expression data. Overall, these findings initiate our understanding of how AMPK activation and changes in cellular metabolism activate pathways leading to cytokine secretion by immune cells. Further study of the downstream effects of metformin and how it may change inflammatory cytokine profiles will strengthen the evidence identifying metformin as a viable preventative therapy for prediabetic patients.
26

Efeito da exposição à fumaça de cigarro sobre a expressão de GLUT4 em ratas prenhes e lactantes e sua prole

Gomes, Patricia Rodrigues Lourenço [UNESP] 02 December 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:50Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-12-02Bitstream added on 2014-06-13T19:08:20Z : No. of bitstreams: 1 gomes_prl_me_prud.pdf: 496954 bytes, checksum: 1a8cc366f4f6c4e8b007f0dafc207ad0 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação para o Desenvolvimento da UNESP (FUNDUNESP) / A gravidez é um período de ajustes metabólicos e, quando associado ao tabagismo provoca alterações que trazem malefícios tanto à saúde materna quanto à saúde fetal. Assim, o estudo investigou o efeito da exposição à fumaça de cigarro sobre a expressão do transportador de glicose GLUT4 e parâmetros séricos e morfométricos de ratas prenhes e sua prole. Foram utilizadas ratas Wistar divididas em: CG- controle sacrificadas após a gestação, com prole adotada pelo grupo CL; CL - controle sacrificadas após o término da lactação; FG – expostas à fumaça de cigarro até o período gestacional e sacrificadas posteriormente, com prole adotada pelo grupo FL; FG – expostas à fumaça de cigarro até o fim da amamentação e posteriormente sacrificadas. As proles foram divididas por sexo e de acordo com a exposição ou não da rata à fumaça. Foram coletados sangue e tecidos para análise de glicemia e do conteúdo gênico e protéico de GLUT4. Nas ratas expostas à fumaça de cigarro, houve redução de peso corpóreo e de tecido adiposo, aumento da glicemia e modulação do transportador GLUT4 no músculo esquelético. Nas proles, houve... / Pregnancy is a period of metabolic adjustments, and when associated with cigarette smoke causes changes both to maternal health as the fetal. The study has investigated the effect of cigarette smoke exposure on the expression of glucose transporter GLUT4 and morphometric parameters and serum of pregnant smoker rats and their offspring. Wistar rats were divided in: CG- nonsmokers sacrificed after pregnancy with offspring adopted by CL; CL – nonsmoker group sacrificed after the end of lactation; FG – smoker group sacrificed after pregnancy with offspring adopted by FL; FL – smoker sacrificed after the end of lactation. The offspring was divided by sex and according to the protocol of their mothers. Blood and tissue were collected for analysis of glucose and the content of GLUT4 gene and protein. In smoker mothers, body weight and adipose tissue were reduced, glucose level was increased, and GLUT4 expression was higher in skeletal muscle. In offspring... (Complete abstract click electronic access below)
27

Effects of scriptaid on osteocytes skeletal homeostasis and metabolic functions

Sun, Ningyuan 07 October 2019 (has links)
Bone has several crucial functions including mechanical support of movement, hematopoiesis, maintenance of mineral homeostasis, and energy regulation. Bone also undergoes continuous remodeling to maintain its structural integrity, which suggests it has strong respiration and energy consumption capability. It has been shown that during development, bones, in particular, osteoblasts, rely on glucose uptake for proper skeletal development. However, the effect of energy utilization on osteocytes’ function is currently unknown. Osteocytes are terminally differentiated osteoblasts and are deeply embedded into the mineralized matrix of bone. Previous studies have shown that PTH promotes bone anabolism, in part, by stimulating osteoblasts anaerobic glycolysis while suppressing glucose oxidation through the TCA cycle. In osteocytes, PTH suppresses Sost expression (the gene encoding a potent inhibitor of bone formation) by inducing HDAC4/5 nuclear translocation and MEF2C inhibition. Recently, Scriptaid, an HDAC complex inhibitor, has been shown to induce Mef2 expression and exercise-like adaptation in mouse muscles. In myocytes, Scriptaid disrupts the HDACs co-repressor complex and induces nuclear export of HDAC4/5 with MEF2 activation. This will subsequently increase the expressions of several genes related to energy utilization such as Glut4 and Pdk4. Thus we hypothesized that Scriptaid might regulate Sost and Glut4 expression in osteocytes. To investigate the effect of Scriptaid on osteocytes, we treated a mouse osteocytic cell line, Ocy454-12H, with Scriptaid. Unexpectedly, Scriptaid potently suppressed Sost, whereas it increased Glut4 expression. Scriptaid stimulated osteocyte respiration and glucose consumption rate. Mechanistically, Scriptaid treatment of Ocy454-12H induced nuclear translocation of Hdac5 whereas it did not affect Hdac4. Silencing of Hdac5 expression with shRNA increased Sost basal expression and blocked Sost suppression induced by Scriptaid. However, Glut4 up-regulation by Scriptaid was independent of the HDAC4/5-MEF2C pathway. Glut4 luciferase reporter assays demonstrated that two additional transcription factors binding sites, O/E&NF1 and C/EBPα, may mediate Scriptaid-induced Glut4 up-regulation. Taken together, these data demonstrate that in osteocytes Scriptaid suppresses Sost expression through regulating HDAC5-MEF2C signaling. However, Scriptaid increases Glut4 expression through Hdac5-independent mechanisms, and dependent on O/E&NF1 and C/EBPα.
28

Regulation of skeletal muscle insulin sensitivity by PAK1

Tunduguru, Ragadeepthi 06 September 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Insulin-stimulated glucose uptake into skeletal muscle cells requires translocation of the glucose transporter-4 (GLUT4) from the cell interior to the plasma membrane. Insulin-stimulated GLUT4 vesicle translocation is dysregulated in Type 2 diabetes (T2D). The Group I p21–activated kinase (PAK1) is a required element in insulin-stimulated GLUT4 vesicle translocation in mouse skeletal muscle in vivo, although its placement and function(s) in the canonical insulin signaling cascade in skeletal muscle cells, remain undetermined. Therefore, the objective of my project is to determine the molecular mechanism(s) underlying the requirement for PAK1 in the process of insulin-stimulated GLUT4 vesicle translocation and subsequent glucose uptake by skeletal muscle cells. Toward this, my studies demonstrate that the pharmacological inhibition of PAK1 activation blunts insulin-stimulated GLUT4 translocation and subsequent glucose uptake into L6-GLUT4myc skeletal myotubes. Inhibition of PAK1 activation also ablates insulin-stimulated F-actin cytoskeletal remodeling, a process known to be required for mobilizing GLUT4 vesicles to the plasma membrane. Consistent with this mechanism, PAK1 activation was also required for the activation of cofilin, another protein implicated in F-actin remodeling. Interestingly, my studies reveal a novel molecular mechanism involving PAK1 signaling to p41-ARC, a regulatory subunit of the cytoskeletal Arp2/3 complex, and its interactions with another cytoskeletal factor, N-WASP, to elicit the insulin-stimulated F-actin remodeling in skeletal muscle cells. Pharmacological inactivation of N-WASP fully abrogated insulin-stimulated GLUT4 vesicle translocation to the cell surface, coordinate with blunted F-actin remodeling. Furthermore, my studies revealed new insulin-induced interactions amongst N WASP, actin, p41-ARC and PAK1; inactivation of PAK1 signaling blocked these dynamic interactions. Taken together, the above studies demonstrate the significance of PAK1 and its downstream signaling to F-actin remodeling in insulin-stimulated GLUT4 vesicle translocation and glucose uptake, revealing new signaling elements that may prove to be promising targets for future therapeutic design.
29

Effects of Endurance Training on the AMPK Response to Exercise.

Chesser, David Gerald 07 December 2007 (has links) (PDF)
Activation of AMP-activated protein kinase (AMPK) results in the upregulation of several intracellular systems which help to prepare a cell for a high energy challenge. The magnitude of the AMPK response to a 10 min bout of exercise has been found to decrease in red quadriceps (RQ) following training, while putative AMPK roles seem to be maintained; specifically, the biogenesis of mitochondria and higher levels of hexokinase II and glucose transporter 4 (GLUT4). If the AMPK response to exercise is responsible in part for these adaptations, how can they be maintained if the AMPK response is attenuated? The purpose of this study was to determine whether phosphorylation of AMPK in RQ increases during 2-hr training bouts after rats have trained for 8 wks. Male Sprague-Dawley rats ran up to 30 m/min up a 15% grade, 2 hr/day for 8 wks. On the final bout of exercise, trained rats ran for 0 (TRC), 30 (TR1), or 120 min (TR2) up a 15% grade at 30 m/min. Red quadriceps (RQ), soleus, and white quadriceps (WQ) were immediately collected and frozen for analysis. Citrate synthase activity increased in RQ (79 ± 3 vs. 37 ± 4 µmol/g/min) and soleus (64 ± 4 vs. 35 ± 2 µmol/g/min) but not in WQ compared to non-trained controls. In trained rats, maximal increases in T-172 phosphorylation of AMPK occurred after 30 min of exercise (relative values = 1.29 ± 0.06 vs. 1.00 ± 0.06). AMPK phosphorylation did not change significantly in trained rats that ran for 2 hrs (1.31 ± 0.09) compared to rats that ran for 30 min. Similarly, maximal increases in AMPK activity in trained rats occurred after 30 min of exercise (pmoles/min/mg = 2.67 ± .05 vs. 1.09 ± .41) and AMPK activity did not change significantly in trained rats that ran for 2 hrs (2.79 ± .17) compared to rats that ran for 30 min. Previous studies demonstrated a 2−3 fold increase in AMPK activity in non-trained rats after 30 min of exercise at lower work rates. These results demonstrate that the AMPK response to exercise is attenuated even after two-hr bouts of exercise. This implies that the increase in mitochondrial oxidative enzymes, GLUT4, and hexokinase II may be maintained by signals other than the AMPK signaling system. The CREB signaling pathway is one such system. Western analysis of phospho-CREB (Ser133) showed a statistically significant increase in phospho-CREB content in trained rats relative to control. No change in phospho-CREB protein expression was observed between TRC, TR1, and TR2 rats. Significant increases of muscle phospho-CREB content in TRC relative to untrained rats suggest that CREB remains phosphorylated in trained rats even after 24 hrs of rest. Accordingly, chronically increased phospho-CREB in muscle of trained rats relative to controls may explain in part how increased levels of mitochondria are maintained in the face of reduced AMPK response. Alternatively, the attenuated AMPK response may still be above the threshold required for inducing adaptations to endurance training.
30

microRNAs 29b, 29c, 199a e 532-3p são potenciais repressores da expressão de GLUT4 e HK2 em músculo esquelético de ratos diabéticos. / microRNAs 29b, 29c, 199a e 532-3p are potentials repressors of GLUT4 and HK2 expression in skeletal muscle of diabetic rats.

Esteves, João Victor Del Conti 13 December 2016 (has links)
Diabetes é uma doença metabólica caracterizada por hiperglicemia associada a prejuízos na captação e utilização de glicose, em que reduções na expressão da proteína GLUT4 (codificada pelo gene SLC2A4), bem como das enzimas Hexokinase-2 e Glycogen synthase (codificadas pelos genes HK2 e GYS1), desempenham papel importante. Recentemente, um novo elemento vem sendo relacionado à etiopatogenia e à fisiopatologia do diabetes, os microRNAs (miRNAs), que são pequenos RNAs envolvidos na regulação da expressão gênica, geralmente afetando a degradação de mRNAs. Entretanto, a participação de miRNAs envolvidos na redução da expressão de mRNAs relacionados a proteínas envolvidas na captação e utilização de glicose, sobretudo em músculo esquelético, permanece desconhecida. O objetivo desse estudo foi investigar a expressão de miRNAs potencialmente reguladores da expressão de Slc2a4/GLUT4, Hk2/HK2 e Gys1/GYS1 em músculo esquelético de ratos diabéticos. Utilizamos ratos Wistar machos que foram tornados diabéticos pela administração de estreptozotocina. Após 13 dias, 3 grupos foram formados: não-diabético (ND) e diabético tratado com placebo (DP) ou insulina (DI). O tratamento foi conduzido por 7 dias, totalizando 21 dias de diabetes. Variáveis metabólicas foram avaliadas e os músculos sóleos foram removidos para avaliar a expressão de mRNAs, miRNAs e proteínas. Uma abrangente análise in silico foi conduzida para determinar miRNAs candidatos a regularem a expressão de Slc2a4, Hk2 e Gys1. Os animais diabéticos apresentaram perda de peso, poliúria, glicosúria, hiperglicemia e aumento de frutosamina plasmática; a insulinoterapia melhorou estas variáveis. O diabetes reduziu a expressão dos mRNAs Slc2a4 (~55%), Hk2 (~47%) e Gys1 (~45%), e das proteínas GLUT4 (~77%), HK2(~52%) e GYS1 (~49%); a insulinoterapia restaurou essas variáveis. A expressão de 20 miRNAs foi avaliada neste estudo; 8 foram modulados pelo diabetes, sendo três supra-regulados, miR-1 (~28%), miR-29b (~118%) e miR-29c (~51%); e cinco infra-regulados, miR-93 (~39%), miR-199a (~30%), miR-345-3p (~23%), miR-532-3p (~26%) e miR-150 (~32%). Exceto pelo miR-1 e miR-150, a insulinoterapia reverteu as demais alterações. Além disso, miR-29b e miR-29c correlacionaram-se negativamente com GLUT4 e HK2, e positivamente com glicemia, glicosúria e frutosamina, sugerindo uma possível relação causal; enquanto que miR-199a e miR-532-3p correlacionaram-se positivamente com GLUT4 e HK2, e também com as variáveis metabólicas, sugerindo uma regulação indireta sobre os mRNAs dessas proteínas. No último caso, demonstrou-se que o miR-199a tem como alvo o NFKB1, um repressor do gene Slc2a4, o qual diminuiu no diabetes, explicando, pelo menos parcialmente, o efeito indireto sobre o GLUT4. Em suma, o diabetes aumenta a expressão de miR-29b e miR-29c, e reduz a expressão de miR-199a e miR-532-3p; o primeiro efeito, potencialmente age diretamente na tradução do mRNA Slc2a4 e Hk2, e o segundo, potencialmente age indiretamente, via NFKB, na transcrição dos genes. Como consequência, as proteínas GLUT4 e HK2 diminuem, o que reduziria a utilização de glicose pelo músculo, contribuindo para a hiperglicemia do diabetes. / Diabetes is a metabolic disease characterized by hyperglycemia associated with impaired glucose metabolism and uptake, in which reductions of GLUT4, hexokinase 2 (HK2) and glycogen synthase 1 (GYS1) proteins, encoded respectively by SLC2A4, HK2 and GYS1 genes, play an important role. Recently, a new element have been related to etiopathogeny and pathophysiology of diabetes, the microRNAs (miRNAs), which are small RNAs involved in the regulation of gene expression, usually by affecting the degradation of mRNAs. However, the participation of miRNAs diabetes-induced reduction of expression of genes related to glucose uptake and metabolism in skeletal muscle remains unknown. Thus, the objective of this study was to investigate the expression of miRNAs potentially regulators of the Slc2a4/GLUT4, Hk2/HK2 and Gys1/GYS1 in skeletal muscle of diabetic rats. Male Wistar rats were rendered diabetic by receiving streptozotocin. After 13 days, 3 groups were formed: non-diabetic (ND), and diabetic treated with placebo (DP) or insulin (DI) (NPH insulin, 6U/day). Treatment was conducted for 7 days, totalizing 21 days of diabetes. At the end of the experimental period, metabolic variables were evaluated and the soleus muscle was removed for evaluation of mRNA, miRNA and protein expression. A broad in silico analysis was performed to determine candidate miRNAs as potential regulators of Slc2a4, Hk2 and Gys1. Diabetic rats shown weight loss, polyuria, glycosuria, hyperglycemia and increased plasma fructosamine; insulin treatment improved these variables. Diabetes reduced Slc2a4 (~55%), Hk2 (~47%) and Gys1 (~45%) mRNAs, as well as GLUT4 (77%), HK2 (52%) and GYS1 (49%) proteins; insulin treatment restored these variables. Twenty miRNAs were assessed in this study. Eight miRNAs were modulated by diabetes in skeletal muscle; three were upregulated: miR-1 (28%), miR-29b (118%) and miR-29c (51%), whereas five were downregulated: miR-93 (39%), miR-150 (32%), miR-199a (30%), miR-345-3p (23%) and miR-532-3p (26%). Except for miR-1 and miR-150, all regulations were reverted by insulin treatment. Besides, miR-29b and miR-29c were negatively correlated with GLUT4 and HK2 proteins, and positively with glucose, glycosuria and plasma fructosamine suggesting a direct causal relationship; while miR-199a and miR-532-3p were positively correlated with GLUT4 and HK2 proteins, and also with the metabolic variables, suggesting an indirect causal relationship. In the last case, it was demonstrated that miR-199a has the Slc2a4 repressor Nfkb1 as target, which was reduced in muscle from diabetic rats, explaining, at least partially, the indirect effect upon GLUT4. In conclusion, diabetes increase the expression of miR-29b and miR-29c, and reduce the expression of miR-199a e miR-532-3p; the first effect, potentially acts directly in the translation of Slc2a4 and Hk2 mRNAs, and the second one, potentially acts indirectly, via NFKB, in the transcription of these genes. As a result, the expression of GLUT4 and HK2 decreases, which would reduce the muscle glucose uptake and metabolization, contributing to the hyperglycemia of the diabetes.

Page generated in 0.0285 seconds