• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 334
  • 120
  • 53
  • 39
  • 16
  • 15
  • 11
  • 9
  • 8
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 717
  • 118
  • 108
  • 93
  • 92
  • 89
  • 84
  • 79
  • 69
  • 67
  • 56
  • 55
  • 49
  • 49
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Simulation of GaN CAVETs in Silvaco Atlas

January 2019 (has links)
abstract: Gallium Nitride (GaN) based Current Aperture Vertical Electron Transistors (CAVETs) present many appealing qualities for applications in high power, high frequency devices. The wide bandgap, high carrier velocity of GaN make it ideal for withstanding high electric fields and supporting large currents. The vertical topology of the CAVET allows for more efficient die area utilization, breakdown scaling with the height of the device, and burying high electric fields in the bulk where they will not charge interface states that can lead to current collapse at higher frequency. Though GaN CAVETs are promising new devices, they are expensive to develop due to new or exotic materials and processing steps. As a result, the accurate simulation of GaN CAVETs has become critical to the development of new devices. Using Silvaco Atlas 5.24.1.R, best practices were developed for GaN CAVET simulation by recreating the structure and results of the pGaN insulated gate CAVET presented in chapter 3 of [8]. From the results it was concluded that the best simulation setup for transfer characteristics, output characteristics, and breakdown included the following. For methods, the use of Gummel, Block, Newton, and Trap. For models, SRH, Fermi, Auger, and impact selb. For mobility, the use of GANSAT and manually specified saturation velocity and mobility (based on doping concentration). Additionally, parametric sweeps showed that, of those tested, critical CAVET parameters included channel mobility (and thus doping), channel thickness, Current Blocking Layer (CBL) doping, gate overlap, and aperture width in rectangular devices or diameter in cylindrical devices. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2019
92

Développement de nouveaux systèmes d’assurance qualité à base de sondes dosimétriques GaN pour la curiethérapie / Development of novel quality assurance systems based on GaN dosimeter probes for brachytherapy

Guiral, Pierrick 05 July 2017 (has links)
Ce travail de thèse a pour but de développer et de caractériser de nouveaux systèmes d'assurance qualité en curiethérapie, à base de sondes dosimétriques en Nitrure de Gallium (GaN). L'étude comprend d'une part la caractérisation et la simulation du transducteur GaN et de la sonde dosimétrique, et d'autre part la mise en œuvre et les tests de 2 systèmes d'assurance qualité.Les propriétés de radioluminescence du transducteur GaN ont été étudiées afin d'optimiser le signal dosimétrique des sondes. La sonde dosimétrique encapsulant un petit volume de cristal GaN a ensuite été caractérisée en vue de son intégration dans des systèmes d'assurance qualité. Des simulations Monte Carlo sur la sonde GaN ont également été effectuées et comparées aux mesures.Pour l'assurance qualité en curiethérapie, nous avons proposé une méthode utilisant plusieurs sondes GaN, pour permettre de déterminer en temps réel les principaux paramètres physiques d'un projecteur de source : la position, le temps de pause et l'activité de la source. Nous avons conçu et réalisé deux prototypes de systèmes d'assurance qualité mettant en œuvre cette méthode : un fantôme instrumenté pour le contrôle prétraitement et un applicateur gynécologique instrumenté pour le contrôle pendant le traitement. Ces deux prototypes ont été testés en conditions cliniques, et leurs principales caractéristiques sont satisfaisantes. Ils répondent aux besoins applicatifs et offrent une perspective intéressante pour de nouveaux outils de contrôle qualité en curiethérapie / This work aims to develop and characterize novel quality assurance systems based on Gallium Nitride (GaN) dosimeter probe for brachytherapy. It includes characterization and simulation studies of the GaN transducer and of the dosimeter probe as well as the implementation and testing of two quality assurance system prototypes.The radioluminescence properties of the GaN transducer have been studied for optimization of the dosimeter response. Characterization studies of dosimeter probes incorporating miniaturized GaN transducers have been carried out in the frame of the quality assurance systems development. Monte Carlo simulations of the GaN probe under irradiation has also been performed and compared with measurements.A method which processes simultaneously the output signals from several GaN probes has been proposed for real time determination of the projector’s physical parameters (dwell position, dwell time and activity of the source). Two quality assurance system prototypes implementing this method have been designed and fabricated: an instrumented phantom for pre-treatment quality assurance and an instrumented gynecological applicator for in vivo quality control. These two prototypes have been tested and evaluated in clinical conditions and their main characteristics are satisfactory. Both systems are in line with the application requirements and offers new perspectives for quality assurance in brachytherapy
93

Design, fabrication and characterization of III-nitride PN junction devices

Limb, Jae Boum 02 July 2007 (has links)
Design, fabrication and characterization of III-Nitride pn junction devices Jae Boum Limb 94 pages Directed by Dr. Russell D. Dupuis This dissertation describes an investigation of three types of III-nitride (AlInGaN) based p-n junction devices that were grown by metalorganic chemical vapor deposition (MOCVD). The three types of devices are Ultra-Violet (UV) avalanche photodiodes (APDs), green light emitting diodes (LEDs), and p-i-n rectifiers. For avalanche photodiodes, a material growth on low-dislocation density GaN substrates, processed with low-damage etching receipes and high quality dielectric passivations, were proposed. Using this technology, GaN APDs with optical gains greater than 3000, and AlGaN APDs showing true avalanche gains have been demonstrated. For green LEDs, the use of InGaN:Mg as the p-layer, rather than employing the conventional GaN:Mg has been proposed. Green LEDs with p-InGaN have shown higher emission intensities and lower diode series resistances compared to LEDs with p-GaN. Using p-InGaN layers, LEDs emitting at green and longer wavelengths have been realized. For p-i-n rectifiers, design, fabrication and characterization of device structures using the conventional mesa-etch configuration, as well as the full-vertical method have been proposed. High breakdown devices with low on-resistances have been achieved. Specific details on device structures, fabrication methods, and characterization results are discussed.
94

Surface Architectures on Gallium Nitride Light Emitting Diodes for Light Extraction Improvement

Lin, Jia-chi 02 August 2010 (has links)
In recent years, even though the light output of GaN-related LED continues to increase, the brightness is still low compared to conventional lighting systems and it is necessary to further improve the light extraction of LEDs. In this study, we utilize the ZnO nanotip with aqueous solution and flip-chip technique to increase the light extraction of GaN LEDs. Electroluminescence (EL) and angular optical distribution are used to measure the light output intensity of LED. In the results, ZnO nanotip after thermal annealing with N2O ambiance decrease the ZnO defects. Flip-chip LED has higher light intensity ( 1.25 times) than conventional one in vertical emitting area ( at 0 angles). The enhancement of light output is duo to the reduction of light absorption from the metal contact and Fresnel¡¦s transmission losses. Finally, we fabricate a high brightness LED with above light enhancement design. EL intensity of LED is increased about 1.38 times than conventional one. Therefore, we can manufacture a LEDs array with above designs to obtain high light output for future solid-state illumination.
95

The Study of High-Mobility AlxGa1-xN/GaN Heterostructures Grown by Plasma-assisted Molecular Beam Epitaxy

Chen, Yen-Liang 05 August 2010 (has links)
The quality of GaN template layer plays a very important role in high electron mobility transistors. We proposed a special method in the growth of molecular beam epitaxy to deal with the dilemma between structure and the morphology of GaN. In our study, we used a nitrogen-rich GaN growth condition to deposit the initial varied layer. After that, we changed the N/Ga ratio stepwise to the growth condition of gallium-rich GaN and grew the epitaxy layer right away. In X-ray diffraction analysis, the full width at half-maximum (FWHM) value of rocking curves of GaN(002) was improved relatively to gallium-rich sample from 531.69 arcsecond to 59.43 arcsecond. In atomic force microscopy (AFM) analysis, the root mean square (rms) roughness of sample surface was improved relatively to nitrogen-rich sample from 18.28 nm to 1.62 nm over 5 £gm ¡Ñ 5 £gm area. The Raman scattering shows there is a slightly tilted plane in gradient layer and the gradient layer can also slash the strain force which is caused from Ga-rich GaN epitaxy layer and AlN buffer layer. A series high mobility AlxGa1-xN/GaN heterostructures samples were grown on MOVPE-grown GaN templates substrate by molecular beam epitaxy with different Al concentrations (x = 0.017~0.355). The quality checked by XRD and AFM indicated that the excellent properties agreed with the GaN-template. The highest mobility in this series samples at 8 K is 19593 cm2/Vs with carrier concentration 3.13 ¡Ñ 1012 cm-2 and Al concentration x = 0.017. In our experiments, the carrier density decreases as Al concentration reduces. In the illuminated Hall measurement, there are only few electrons increased following blue LED illumination. It shows that there are only few deep level defects existing near the heterointerface. From temperature-depended Shubnikov-de Haas (SdH) oscillations, the electron effective mass m* in 2DEG are evaluated as 0.213 mo and for x = 0.207 0.227 moand 0.136 respectively. The high mobility AlxGa1-xN/GaN was fabricated to a series of wires by focused ion beam (FIB) equipment, and the width of the active channel is ranged from 900 nm to 50 nm (900 nm, 500 nm, 300 nm, 200 nm, 100 nm, 80 nm and 50 nm) with the channel orientation in [11 0] direction. The largest spin-splitting energy in the series of wires is 2.14 meV. Due to larger spin-splitting energy and quasi-ballistic transportation, the 200 nm wire is the best candidate to be the channel of the quantum-ring interferometer in our case.
96

Characterization and Growth of GaMnN Nanorods Grown by Plasma-Assisted Molecular Beam Epitaxy

Chen, Ting-Hong 31 July 2012 (has links)
In this work, Mn atoms are doped into GaN nanorods by two doping types, homogeneous and delta doping, and GaN nanorods are grown on Si (111) substrate using plasma-assisted MBE. The GaMnN nanorods are characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), high-resolution x-ray diffraction (HR-XRD), Raman scattering, Transmission electron microscopy (TEM), superconducting quantum interference device (SQUID), and x-ray photoelectron spectroscopy (XPS). The Mn delta-doping GaN nanorods with Ga/Mn growth time ratio 20 are approximately 1500 nm in height, grown along the c-axis. The Mn concentration in nanorods is determined to be 0.83% by EDS, without secondary phase formation. The Mn atoms substitute Ga sites in the GaN wurtzite hexagonal structure and, according to the results of Raman, there is no observable Mn-N cluster formation existed. The delta-doping structure, without secondary phase inclusions, can be observed under TEM imaging of the nanorods. The nanorods appear to show ferromagnetic behavior at room temperature, as judged by the M-H with hysteresis curve, however the small the loops are. The delta-doping is adopted in this thesis work to fabricate GaMnN DMS nanorods without secondary phase formation.
97

Mechanical and Optoelectronic Response of Wide Band Gap Semiconductors under Low Dimensional Stress

Sung, Ta-hao 24 December 2012 (has links)
Wide band gap semiconductors ZnO/GaN attracted a great deal of interests for decade, due to their wide direct band, high electron binding energy, excellent chemical and thermal stability, good heat conductivity and capability, high electron mobility and transparent properties at room temperature. They have many potential applications such as laser, biosensor, piezoelectric power generator, nano-electromechanical systems and flat panel field emission displays. However, unexpected contact loading during processing or packaging may induce residual stresses and/or an increase in defect concentration in ZnO/GaN wafer or thin film, causing possible degenerated reliability and efficient operation of the piezoelectric and photonic device. To ensure and improve the performance of devices based on ZnO/GaN, a better understanding of the mechanical/optoelectronic response under different processing and loading conditions and even the measuring methods are necessary. In this thesis, our aim is to reveal a comprehensive investigation of the mechanical responses on polar/non-polar GaN/ZnO single crystal under low dimensional stress. We try to provide the fundamental theoretical and experimental studies for further application and researches, such as tension testing, residual stress, low temperature cathodoluminescence and Raman spectroscopy analysis. In this study, the theoretical Young¡¦s modulus and Poisson ratio of ZnO/GaN are extracted from elastic constants for comparison and further estimation. The nano-scaled mechanical properties, such as Young¡¦s modulus, hardness and yield stress, are identified by using the nanoindentation system. The experimental values were fitting by the Hertzian contact theory. The results are in good agreement with the theoretical predictions. No significant strain rate influence is observed over the strain rate from 1x10-2 s-1 to 1x10-4 s-1. The comparisons of mechanical properties between the polar and non-polar planes of ZnO are firstly examined. The results reveal that the non-polar planes are softer than the polar plane. Both a-plane and m-plane ZnO have lower hardness and yield stress than c-plane ZnO. The microstructure and deformation mechanism are analyzed by using X-TEM and SEM. No pop-out or slope changing was found in their load-displacement curves, suggesting no phase transformation, twining or crack domain deformation occurred under microcompression and nanoindentation testing. Taking all considerations for the higher resulting Schmid factor and lower Burgers¡¦ vector, the most possible slip system for c-plane hexagonal structures is the pyramidal plane. The a-plane has shorter burger¡¦s vector on the slip plane which leads the lower yield stress than c-plane. To erase the effect of FIB induced Ga ion implantation, the c-plane ZnO was annealed at 900oC for 1 hour. We found that the yield stress under microcompression decreases and the intensity of the cathodoluminescence spectrum increases after the annealing process. This result indicates that the thermal treatment is a good way to refine the crystal quality and decrease the defects density. The E2 peak of Raman spectrometer exhibits high residual compression stress constrain in the c-plane GaN thin film. Due to the high surface/volume ratio of pillar, nil residual stress remains in the GaN pillar after the FIB milling process. Even after the yield point, nil residual stress remains in the c-GaN pillar. Results indicate that the one dimensional geography is a good way to erase residual stress.
98

Study on the correlation between microstructures and cathodoluminescence of the AlGaInN/AlGaN multi-quantum well LED

Su, Bo-Chang 22 July 2004 (has links)
The spectral range of quaternary AlGaInN/AlGaN MQWs extends from UV to IR. Nitride-based green and blue LEDs reveal a high efficiency for the further application. Integrating LEDs of three element colors can perform white light. The optical properties of GaN MQWs are very sensitive to the growth conditions of MQWs. The ununiformity is not fabrication desired but needs to prevent, which is necessary to understand and to precisely control through its growth condition for manufacture the LED. In this work the sample has a luminescence varied from orange to purple across the whole wafer. In this work, the correlations between optical and structural properties in these samples have been studied by means of Transmission Electron Microscopy (TEM), energy dispersive X-ray spectrometry (EDS), and cathodoluminescence (CL) measurements.
99

Growth and Characterization of GaN Nanorods Grown on Si(111) Substrate by Plasma-assisted Molecular Beam Epitaxy

Hsiao, Ching-Lien 13 October 2004 (has links)
Nearly dislocation-free vertical GaN pillars in nanoscale were grown on Si (111) surface through self-assembly by molecular-beam epitaxy. No extra catalytic or nanostructural assistance has been employed. These nanorods have a lateral dimension from 10 nm to ~ 800 nm and a height of 50 nm to 3
100

Characterization of GaN/AlGaN heterostructures grown by molecular beam epitaxy

Chen, Kuang-yao 05 July 2005 (has links)
We mainly studied the characterization of GaN/AlGaN heterostructures which were grown by molecular beam epitaxy. For reduced lattice mismatch, we inserted AlN as buffer layer. We varied the parameters of buffer layer, such as the ratio of nitrogen and aluminum and the thickness. By the analysis of X-ray diffraction, we could determine the state of mismatch. For the thickness of buffer layer, lattice mismatch is most serious at 20 minute growth. Under the observation of field emission scan electron microscopy and reflection high energy electron diffraction, we found N/Al=40 is N-face and N/Al=26 is Ga-face. For the thickness of buffer layer, the samples of 1-minute and 5-minute growth had the optimal Ga-face. For the investigation of photoluminescence, we could obtain the energy gap of AlGaN is 3.42ev. Furthermore, the doping silicon was used to vary carrier concentration, and we could show that a good Hall mobility was achieved at the doping temperature 1250¢J. We also could show good Hall mobility at 1 minute growth and 5 minute growth (N/Al=26). We tried to find the best parameters for the growth of GaN/AlGaN heterostructures.

Page generated in 0.0575 seconds