• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 206
  • 36
  • 13
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 304
  • 304
  • 171
  • 65
  • 45
  • 40
  • 35
  • 29
  • 27
  • 25
  • 24
  • 23
  • 22
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Control of electronic and optical properties of single and double quantum dots via electroelastic fields

Zallo, Eugenio 23 March 2015 (has links) (PDF)
Semiconductor quantum dots (QDs) are fascinating systems for potential applications in quantum information processing and communication, since they can emit single photons and polarisation entangled photons pairs on demand. The asymmetry and inhomogeneity of real QDs has driven the development of a universal and fine post-growth tuning technique. In parallel, new growth methods are desired to create QDs with high emission efficiency and to control combinations of closely-spaced QDs, so-called "QD molecules" (QDMs). These systems are crucial for the realisation of a scalable information processing device after a tuning of their interaction energies. In this work, GaAs/AlGaAs QDs with low surface densities, high optical quality and widely tuneable emission wavelength are demonstrated, by infilling nanoholes fabricated by droplet etching epitaxy with different GaAs amounts. A tuning over a spectral range exceeding 10 meV is obtained by inducing strain in the dot layer. These results allow a fine tuning of the QD emission to the rubidium absorption lines, increasing the yield of single photons that can be used as hybrid semiconductor-atomic-interface. By embedding InGaAs/GaAs QDs into diode-like nanomembranes integrated onto piezoelectric actuators, the first device allowing the QD emission properties to be engineered by large electroelastic fields is presented. The two external fields reshape the QD electronic properties and allow the universal recovery of the QD symmetry and the generation of entangled photons, featuring the highest degree of entanglement reported to date for QD-based photon sources. A method for controlling the lateral QDM formation over randomly distributed nanoholes, created by droplet etching epitaxy, is demonstrated by depositing a thin GaAs buffer over the nanoholes. The effect on the nanohole occupancy of the growth parameters, such as InAs amount, substrate temperature and arsenic overpressure, is investigated as well. The QD pairs show good optical quality and selective etching post-growth is used for a better characterisation of the system. For the first time, the active tuning of the hole tunnelling rates in vertically aligned InGaAs/GaAs QDM is demonstrated, by the simultaneous application of electric and strain fields, optimising the device concept developed for the single QDs. This result is relevant for the creation and control of entangled states in optically active QDs. The modification of the electronic properties of QDMs, obtained by the combination of the two external fields, may enable controlled quantum operations.
302

Le procédé HVPE pour la croissance de nanofils semiconducteurs III-V / The HVPE process for the growth of III-V semiconductor nanowires

Lekhal, Kaddour 18 February 2013 (has links)
Cette thèse est consacrée à l’étude de l’outil d’épitaxie HVPE (Hydride Vapour Phase Epitaxy) pour la synthèse avec et sans catalyseur de nanofils semiconducteurs GaN et GaAs. Une étude systématique de l’influence des conditions expérimentales sur la croissance des fils de GaN est effectuée, afin de démontrer la faisabilité de cette croissance sur la surface des substrats saphir plan-c et silicium sans aucun traitement de la surface préalablement à la croissance. Nous avons démontré la croissance par VLS-HVPE, de nanofils de GaN de diamètres constants de 40 à 200 nm, de longueurs supérieures à 60 μm et présentant des qualités optique et cristallographique remarquables. Pour les nanofils de GaAs, la stabilité, inédite, de la phase cubique zinc-blende pour des diamètres de 10 nm a été démontrée par le procédé de croissance VLS-HVPE sur des longueurs de quelques dizaines de micromètres. Les mécanismes de croissance sont discutés à partir des diagrammes de phase et de la physique de la croissance HVPE qui met en oeuvre des précurseurs gazeux chlorés. Pour les semiconducteurs III-V, cette étude permet d’envisager des applications liées aux nanofils longs qui jusque là n’étaient exploitées que pour le silicium. Ces travaux montrent que dans le contexte des Nanosciences, la HVPE, outil épitaxial à fortes vitesses de croissance, mérite une audience élargie, et peut s’inscrire comme un outil complémentaire efficace aux procédés MOVPE et MBE pour le façonnage contrôlé de la matière à l’échelle nanométrique. / This thesis is devoted to the study of HVPE (Hydride Vapour Phase Epitaxy) method of growing GaN and GaAs nanowires with and without catalyst. A systematic study of the influence of the growth conditions on GaN formation was performed in order to demonstrate the feasibility of this growth on c-plane sapphire and silicon substrates without preliminary treatment of the surface. We have demonstrated by VLS-HVPE the growth of the GaN nanowires with constant diameters of 40 to 200 nm and of length up to 60 μm, while they possess remarkable optical and crystal quality. The newly observed stability of the zinc blende structure for GaAs nanowires with diameters of 10 nm has been described by the VLS-HVPE process, for lengths of few tens of micrometers. The growth mechanisms are discussed based on the phase diagram and the physics of near-equilibrium HVPE using chloride precursors. For III-V semiconductors, the study allows us to consider applications related to long nanowires that, at present, are used only for silicon. This work shows that in the context of Nanoscience, the fast growth HVPE method deserves a wider audience and thus could be considered as an effective complementary tool to MOVPE and MBE processes for the controlled shaping of matter on the nanoscale.
303

Control of electronic and optical properties of single and double quantum dots via electroelastic fields

Zallo, Eugenio 12 March 2015 (has links)
Semiconductor quantum dots (QDs) are fascinating systems for potential applications in quantum information processing and communication, since they can emit single photons and polarisation entangled photons pairs on demand. The asymmetry and inhomogeneity of real QDs has driven the development of a universal and fine post-growth tuning technique. In parallel, new growth methods are desired to create QDs with high emission efficiency and to control combinations of closely-spaced QDs, so-called "QD molecules" (QDMs). These systems are crucial for the realisation of a scalable information processing device after a tuning of their interaction energies. In this work, GaAs/AlGaAs QDs with low surface densities, high optical quality and widely tuneable emission wavelength are demonstrated, by infilling nanoholes fabricated by droplet etching epitaxy with different GaAs amounts. A tuning over a spectral range exceeding 10 meV is obtained by inducing strain in the dot layer. These results allow a fine tuning of the QD emission to the rubidium absorption lines, increasing the yield of single photons that can be used as hybrid semiconductor-atomic-interface. By embedding InGaAs/GaAs QDs into diode-like nanomembranes integrated onto piezoelectric actuators, the first device allowing the QD emission properties to be engineered by large electroelastic fields is presented. The two external fields reshape the QD electronic properties and allow the universal recovery of the QD symmetry and the generation of entangled photons, featuring the highest degree of entanglement reported to date for QD-based photon sources. A method for controlling the lateral QDM formation over randomly distributed nanoholes, created by droplet etching epitaxy, is demonstrated by depositing a thin GaAs buffer over the nanoholes. The effect on the nanohole occupancy of the growth parameters, such as InAs amount, substrate temperature and arsenic overpressure, is investigated as well. The QD pairs show good optical quality and selective etching post-growth is used for a better characterisation of the system. For the first time, the active tuning of the hole tunnelling rates in vertically aligned InGaAs/GaAs QDM is demonstrated, by the simultaneous application of electric and strain fields, optimising the device concept developed for the single QDs. This result is relevant for the creation and control of entangled states in optically active QDs. The modification of the electronic properties of QDMs, obtained by the combination of the two external fields, may enable controlled quantum operations.
304

Novel tools for ultrafast spectroscopy

Jarvis, Thomas William 06 February 2012 (has links)
Exciton dynamics in semiconductor nanostructures are dominated by the effects of many-body physics. The application of coherent spectroscopic tools, such as two-dimensional Fourier transform spectroscopy (2dFTS), to the study of these systems can reveal signatures of these effects, and in combination with sophisticated theoretical modeling, can lead to more complete understanding of the behaviour of these systems. 2dFTS has previously been applied to the study of GaAs quantum well samples. In this thesis, we outline a precis of the technique before describing our own experiments using 2dFTS in a partially collinear geometry. This geometry has previously been used to study chemical systems, but we believe these experiments to be the first such performed on semiconductor samples. We extend this technique to a reflection mode 2dFTS experiment, which we believe to be the first such measurement. In order to extend the techniques of coherent spectroscopy to structured systems, we construct an experimental apparatus that permits us to control the beam geometry used to perform four-wave mixing reflection measurements. To isolate extremely weak signals from intense background fields, we extend a conventional lock-in detection scheme to one that treats the optical fields exciting the sample on an unequal footing. To the best of our knowledge, these measurements represent a novel spectroscopic tool that has not previously been described. / text

Page generated in 0.0474 seconds