• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Emission of Multiple Messengers from Gamma-Ray Bursts

Rudolph, Annika Lena 05 August 2022 (has links)
Gammastrahlenblitze (Gamma-Ray Bursts, GRBs) gehören zu den energiereichsten transienten Ereignissen im Universum und werden als mögliche Quellen von ultra-hochenergetischen kosmischen Strahlen (Ultra-High-Energy Cosmic Rays, UHECRs) gehandelt. Eine eindeutige Bestätigung durch UHECR-Messungen ist jedoch schwierig, da die Richtungsinformation der kosmischen Strahlen während ihrer Ausbreitung aufgrund von Ablenkung durch Magnetfelder teilweise verloren geht. In dieser Dissertation folgen wir einem alternativen multi-messenger Ansatz in welchem die Anwesenheit von kosmischen Strahlen in einem astrophysikalischen Objekt durch Neutrino- oder Photon-Signaturen angezeigt wird. Hierfür simulieren wir GRBs im Internal-Schock-Szenario, welches verschiedene Emissionszonen entlang des astrophysikalischen Jets erfasst, und berechnen nukleare Wechselwirkungen mit modernsten numerischen Codes. In diesem Rahmen diskutieren wir unter welchen Voraussetzungen die Quellklasse von GRBs UHECR-Daten beschreiben kann ohne Neutrinolimits. Letzere begründen sich im Mangel an gemessenen hoch-energetischen (High-Energy, HE) Neutrinos, die mit bekannten GRBs assoziert werden konnten. Die Neutrinolimits können alternativ in Objekten niedriger Leuchtkraft eingehalten werden, die typischerweise eine niedrige Neutrinoproduktionseffizienz haben. Wir präsentieren leptonische Strahlungsmodellierungen für die Unterklasse von GRBs niedriger Leuchktraft mit einem Fokus auf sehr hoch-energetischer (Very-High-Energy, VHE) Emission welche von aktuellen/zukünfitgen Instrumenten beobachtet werden könnte und bestimmen wir die maximalen Energien verschiedener Atomkerne. Die Präsenz von Hadronen kann alternativ durch Signaturen in verschiedenen Wellenlängen des Photonspektrums angezeigt werden. Wir erforschen diesen Ansatz in lepto-hadronischen Modellen für GRBs mit hoher Leuchtkraft, wobei wir kritisch diskutieren, welche Bedingungen erfüllt sein müssen damit typische GRB-Spektren reproduziert werden können. / Gamma-Ray Bursts (GRBs) are among the most energetic transients in the Universe and candidate sources of Ultra-High-Energy Cosmic Rays (UHECRs). A clear confirmation from UHECR measurements is however challenging, as the directional information of cosmic rays is partially lost due to deflection by (inter-)galactic magnetic fields. In this dissertation we follow an alternative multi-messenger approach, in which the presence of UHECRs in an astrophysical object is indicated by neutrino or photon signatures produced in nuclear interactions. For this, we simulate GRBs in the multi-zone internal shock model, which accounts for different emission zones along the astrophysical jet and calculate nuclear interactions with state-of-the-art numerical codes. In this framework we discuss under which conditions the population of GRBs can still account for UHECR measurements while obeying current neutrino limits that stem from the lack of detected High-Energy (HE) neutrinos which could be associated with known GRBs. These neutrino limits may alternatively be met in low-luminosity objects, which typically have low neutrino production efficiency. We present leptonic radiation models of the sub-class of low-luminosity GRBs, with a focus on Very-High-Energy (VHE) emission potentially observable by current/future instruments. Connecting to UHECRs, we determine maximal energies of different cosmic-ray nuclei. The presence of nuclei may also be indicated by multi-wavelength signatures in the photon spectrum. We explore this approach in lepto-hadronic models of high-luminosity bursts, where we also critically review the conditions necessary to reproduce typical GRB spectra within our model.
2

Nuclear Cascades and Neutrino Production in the Sources of Ultra-High Energy Cosmic Ray Nuclei

Biehl, Daniel 13 September 2019 (has links)
Der Ursprung ultra-hochenergetischer kosmischer Strahlung (UHECRs) ist eine der wichtigsten offenen Fragen der Astrophysik. Gammastrahlenblitze (GRBs) galten als potentielle Quellen, da sie zu den energetischsten Ereignissen im Universum zählen. Konventionelle Szenarien sind jedoch durch Neutrinodaten stark eingeschränkt. Außerdem weisen Messungen der chemischen Zusammensetzung kosmischer Strahlen auf schwere Kerne hin, welche in zu dichten Strahlungsfeldern disintegrieren würden. Um dieses Dilemma zu umgehen deuten neue Studien auf versteckte Beschleuniger hin, welche schwer zu detektieren sind. In dieser Dissertation präsentieren wir neue Ansätze um nukleare Prozesse in astrophysikalischen Quellen effizient und selbstkonsistent zu berechnen. Wir quantifizieren diese Wechselwirkungen anhand der nuklearen Kaskade, welche die Disintegration schwerer Kerne in leichtere Fragmente beschreibt. Auch in umfassenden Modellen, wie sie in dieser Arbeit entwickelt werden, sind GRBs durch Neutrinodaten unter Druck. Dennoch zeigen wir, dass eine Population von GRBs niedriger Luminosität konsistent mit derzeitigen Messungen ist und zugleich auch das Spektrum und die Zusammensetzung kosmischer Strahlung über den Knöchel hinweg sowie Neutrinodaten beschreiben kann. Aus unserer Prozedur können wir zusätzlich weitere Quelleneigenschaften wie die baryonische Ladung oder die Ereignisrate bestimmen. Wir zeigen weiter, dass auch von schwarzen Löchern zerrissene Sterne mögliche Kandidaten eines gemeinsamen Ursprungs der gemessenen kosmischen Strahlung und PeV-Neutrinos sind. Sie können jedoch durch kosmogenische Neutrinos von LLGRBs abgegrenzt werden. Schließlich wenden wir unser Modell auf das Gravitationswellenereignis GW170817 an. Wir zeigen für verschiedene Jet-Szenarien, dass der erwartete Neutrinofluss weit unter der Sensitivität derzeitiger Instrumente liegt. Dennoch könnten verschmelzende Neutronensterne die kosmische Strahlung unterhalb des Knöchels erklären. / The origin of Ultra-High Energy Cosmic Rays (UHECRs) is still one of the most important open questions in astrophysics. Gamma-Ray Bursts (GRBs) were considered as potential sources as they are among the most energetic events known in the Universe. However, conventional GRB scenarios are strongly constrained by astrophysical neutrino data. In addition, cosmic ray composition measurements indicate the presence of heavy nuclei, which would disintegrate if the radiation fields in the source were too dense. In order to circumvent this dilemma, recent studies point towards hidden accelerators, which are intrinsically hard to detect. In this dissertation, we present novel approaches to efficiently and self-consistently calculate the nuclear processes in astrophysical sources. We quantify these interactions by means of the nuclear cascade, which describes the subsequent disintegration of heavy nuclei into lighter fragments. Even in sophisticated source-propagation models, as the ones developed in this thesis, conventional GRBs are in tension with neutrino data. However, we demonstrate that a population of low-luminosity GRBs is not only consistent with current constraints, but can even describe the UHECR spectrum and composition across the ankle as well as neutrino data simultaneously. From our fitting procedure we can further constrain certain source properties, such as the baryonic loading and the event rate. Furthermore, we show that stars disrupted by black holes are viable candidates for a simultaneous description of cosmic ray and PeV neutrino data too. However, they can be discriminated from LLGRBs by cosmogenic neutrinos. Finally, we apply our model to GW170817. We show for different jet scenarios that the expected neutrino flux is orders of magnitude below the sensitivity of current instruments. Nevertheless, binary neutron star mergers could in principle support cosmic rays below the ankle.
3

Ultra-high-energy cosmic-ray nuclei and neutrinos in models of gamma-ray bursts and extragalactic propagation

Heinze, Jonas 08 June 2020 (has links)
Utrahochenergetische kosmische Strahlung (ultra-high-energy cosmic rays -- UHECR) besteht aus ionisierten Atomkernen mit den höchsten Teilchenergien, die je gemessen wurden. Zwar wurden die Quellen von UHECRs noch nicht eindeutig identifiziert, doch gibt es deutliche Anzeichen, dass sie extragalaktisch sind. Um die Beobachtungen zu interpretieren, wird ein Modell der Wechselwirkungen mit Photofeldern sowohl in der Quelle als auch während der extragalaktischen Propagation benötigt. Bei diesen Wechselwirkungen werden sekundäre Neutrinos erzeugt. Diese Dissertation behandelt Modelle der Quellen von UHECRs und die damit verbundene Produktion von Neutrinos sowohl in den Quellen als auch während der Propagation. Dafür wurde ein neuer Code, PriNCe, für die Propagation von UHECRs entwickelt. Dieser Code wird in einem umfangreichen Parameterscan für ein generisches Quellenmodell angewendet, welches mit dem Spektralindex, der maximalen Rigidität, der kosmologischen Quellenverteilung und der chemischen Komposition als freie Parameter definiert ist. Dabei wird der Einfluss von verschiedenen Photodisintegrations- und Luftschauermodellen auf die erwarteten Eigenschaften der Quellen demonstriert. Der Fluss kosmogenischer Neutrinos, der sich daraus robust vorhersagen lässt, liegt außerhalb der Reichweite aller derzeit geplanten Neutrinodetektoren. GRBs als mögliche Quellen von UHECRs werden im Multi-Collision Internal-Shock Modell simuliert, welches die Abhängigkeit der Strahlungsprozesse von den verschiedenen Dissipationsradien im Plasmajet berücksichtigt. Für dieses Modell wird der Effekt demonstriert, den verschiedene Annahmen über die anfängliche Verteilung des Plasmajets und das hydrodynamische Modell auf die resultierende UHECR- und Neutrinosstrahlung haben. Für den Gammastrahlenblitz GRB170817A, welcher zusammen mit einem Gravitationswellensignal beobachtet wurde, werden Vorhersagen für den Neutrinofluss und ihre Abhängigkeit vom Beobachtungswinkel gemacht. / Ultra-high-energy cosmic rays (UHECRs) are the most energetic particles observed in the Universe. While the astrophysical sources of UHECRs have not yet been uniquely identified, there are strong indications for an extragalactic origin. The interpretation of the observations requires both simulations of UHECR acceleration and energy losses inside the source environment as well as interactions during extragalactic propagation. Due to their extreme energies, UHECR will interact with photons in these environments, producing a flux of secondary neutrinos. This dissertation deals with models of UHECR sources and the accompanying neutrino production in the source environment and during extragalactic propagation. We have developed a new, computationally efficient code, PriNCe, for the extragalactic propagation of UHECR nuclei. The PriNCe code is applied for an extensive parameter scan of a generic source model that is described by the spectral index, the maximal rigidity, the cosmological source evolution and the injected mass composition. In this scan, we demonstrate the impact of different disintegration and air-shower models on the inferred source properties. A prediction for the expected flux of cosmogenic neutrinos is also derived. GRBs are discussed as specific UHECR source candidates in the multi-collision internal-shock model. This model takes the radiation from different radii in the GRB outflow into account. We demonstrate how different assumptions about the initial setup of the jet and the hydrodynamic collision model impact the production of UHECRs and neutrinos. Motivated by the multi-messenger observation of GRB170817A, we discuss the expected neutrino production from this GRB and its dependence on the observation angle. We show that the neutrino flux for this event is at least four orders of magnitude below the detection limit for different geometries of the plasma jet.

Page generated in 0.0445 seconds