• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 57
  • 57
  • 19
  • 17
  • 16
  • 12
  • 12
  • 11
  • 10
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Mechanistic Investigation of Novel Niobium-Based Materials as Enhanced Oxygen Storage Components and Innovative CO Oxidation Catalyst Support for Environmental Emission Control Systems

Leung, Emi January 2016 (has links)
Nb-doped ZrO₂-CeO₂-Y₂O₃ solid solution (Nb-ZrCeYO) is studied as a possible oxygen storage component in three way automobile exhaust catalysts. It shows enhanced oxygen storage (OS) capacity with a higher extent of reduction at temperatures within the typical operating range of three-way catalyst compared with solid solutions without Nb. However, after several days of exposure to ambient air, the OS behavior of the Nb-doped samples shows significant degradation. Degradation is slowed for samples stored in evacuated environments (i.e. vacuum sealed glass tubes). NbOₓ segregation to the surface under oxidizing conditions is hypothesized as the cause of the degradation. This hypothesis is consistent with the temperature programmed reduction data. The addition of small amounts of Pt to the aged samples restores the enhanced initial performance advantages. It is postulated that electrons supplied by metallic Pt mimic reducing conditions, which are known to re-disperse surface NbOₓ species into the bulk solid solution, leading to stable, time-independent OS performance. However, the small advantage caused by Nb addition over the current technology is insignificant for the TWC application. Therefore, we focus on other environmental applications such as CO oxidation by Nb-containing catalysts with the specific objective of enhanced CO oxidation activity by formation of Cu¹⁺ species supported on Nb₂O₅. The preparation of a Cu(1)Nb(2)Oₓ results in a solid solution crystallized in three different phases: CuO, Nb₂O₅, and CuNb₂O₆. The solid solution shows enhanced low temperature CO oxidation (<155˚C) activity compared to the reference CuO solid solution. Analysis by hydrogen-temperature programmed reduction (H2-TPR) indicates there are two different Cu species in the Nb-containing solid solution: highly dispersed Cu species and bulk CuO. The existence of an interaction between Cu and Nb ions is hypothesized for the enhanced low temperature CO oxidation activity by formation of Cu⁺¹. This hypothesis is consistent with XPS data, indicating the existence of more catalytically active Cu¹⁺/⁰ and Cu²⁺ species in the Nb₂O₅ sample, where the reference bulk CuO oxide shows only the less active Cu²⁺ species. Impregnation of Cu-containing precursor salts on the Nb₂O₅ support leads to enhanced CO oxidation activity: The Cu supported Nb₂O₅ sample shows improved CO oxidation activity compared with the reference Cu supported on Al₂O₃. An isothermal aging test shows high stability of the Cu¹⁺ species on the Nb₂O₅ support at 155˚C for 20 hours in air. Studies of the optimization of the Cu supported Nb₂O₅ leads one to conclude that low surface coverage of NbOx on Al₂O₃ is the reason why these samples shows lower CO oxidation activity. The optimal amount of Cu species on the Nb₂O₅ support is 6%, where activity is similar to 1%Pt/Al₂O₃, the state of the art CO oxidation catalyst in industry, but a phase transformation of Nb₂O₅ occurring at 800˚C, leads to a loss in the enhanced CO activity. A gradual loss in surface area is observed for samples aged at higher temperatures, indicating support sintering as the main cause of the performance deterioration. Stable performance at low temperatures makes CuOₓ/Nb₂O₅ a potential candidate for stationary abatement applications, which operate at temperatures <400˚C. Advanced aging would be necessary to qualify it for specific applications. A kinetic model for CO oxidation of CuOₓ/Nb₂O₅ is also developed.
12

Natural Gas Storage Valuation

Li, Yun 16 November 2007 (has links)
In this thesis, one methodology for natural gas storage valuation is developed and two methodologies are improved. Then all of the three methodologies are applied to a storage contract. The first methodology is called "intrinsic rolling with spot and forward", which takes both the spot and forward prices into account in the valuation. This method is based on the trading strategy by which a trader locks the spot and forward positions by solving an optimization problem based on the market information on the first day. In the following days, the trader can obtain added value by adjusting the positions based on new market information. The storage value is the sum of the first day's value and the added values in the following days. The problem can be expressed by a Bellman equation and solved recursively. A crucial issue in the implementation is how to compute the expected value in the next period conditioned on the information in current period. One way to compute the expected value is Monte Carlo simulation with ordinary least square regression. However, if all of the state variables, spot, and forward prices are incorporated in the regression there are too many terms, and the regression becomes uncontrollable. To solve this issue, three risk factors are chosen by performing principle component analysis. Dimension of the regression is greatly reduced by only incorporating the three risk factors. Both the second methodology and the third methodology only consider the spot price in the valuation. The second methodology uses Monte Carlo simulation with ordinary least square regression, which is based on the work of Boogert and Jong (2006). The third methodology uses stochastic dual dynamic programming, which is based on the work of Bringedal (2003). However, both methodologies are improved to incorporate bid and ask prices. Price models are crucial for the valuation. Forward prices of each month are assumed to follow geometric Brownian motions. Future spot price is also assumed to follow a geometric Brownian motion but for a specific month its expectation is set to the corresponding forward price on the valuation date. Since the simulation of spot and forward prices is separated from the storage optimization, alternative spot and forward models can be used when necessary. The results show that the value of the storage contract estimated by the first methodology is close to the market value and the value estimated by the Financial Engineering Associates (FEA) provided function. A much higher value is obtained when only spot price is considered, since the high volatility of the spot curve makes frequent position change profitable. However in the reality traders adjust their positions less frequently.
13

Chemistry and Applications of Metal-Organic Materials

Zhao, Dan 2010 December 1900 (has links)
Developing the synthetic control required for the intentional 3-D arrangement of atoms remains a holy grail in crystal engineering and materials chemistry. The explosive development of metal-organic materials in recent decades has shed light on the above problem. Their properties can be tuned by varying the organic and/or inorganic building units. In addition, their crystallinity makes it possible to determine their structures via the X-ray diffraction method. This dissertation will focus on the chemistry and applications of two kinds of metal-organic materials, namely, metal-organic frameworks (MOFs) and metal-organic polyhedra (MOP). MOFs are coordination polymers. Their permanent porosity makes them a good “gas sponge”. In the first section, an isoreticular series of MOFs with dendritic hexacarboxylate ligands has been synthesized and characterized structurally. One of the MOFs in this series, PCN-68, has a Langmuir surface area as high as 6033 m2 g-1. The MOFs also possess excellent gas (H2, CH4, and CO2) adsorption capacity. In the second section, a NbO-type MOF, PCN-46, was constructed based on a polyyne-coupled di-isophthalate linker formed in situ. Its lasting porosity was confirmed by N2 adsorption isotherm, and its H2, CH4 and CO2 adsorption capacity was examined at 77 K and 298 K over a wide pressure range (0-110 bar). Unlike MOFs, MOP are discrete porous coordination nanocages. In the third section, a MOP covered with bulky triisopropylsilyl group was synthesized, which exhibits a thermosensitive gate opening property. This material demonstrates a molecular sieving effect at a certain temperature range, which could be used for gas separation purpose. In the last section, a MOP covered with alkyne group was synthesized through kinetic control. The postsynthetic modification via click reaction with azide-terminated polyethylene glycol turned them into metallomicelles, which showed controlled release of an anticancer drug 5-fluorouracil. In summary, two kinds of metal-organic materials have been discussed in this dissertation, with the applications in gas storage, gas separation, and drug delivery. These findings greatly enrich the chemistry and applications of metal-organic materials.
14

Real options valuation in energy markets

Zhou, Jieyun 02 April 2010 (has links)
Real options have been widely applied to analyze investment planning and asset valuation under uncertainty in many industries, especially energy markets. Because of their close analogy to financial options, real options can be valued using the classical financial option pricing theories and their extensions. However, as real options valuation often involves complex payoff structures and operational constraints of the underlying real assets or projects, accurate and flexible methods for solving the valuation problem are essential. This thesis investigates three different approaches to real options valuation and contributes to aspects of modeling realism and computational efficiency. The contributions are illustrated through two important applications of real options in energy markets: natural gas storage and power plant valuation. Because spread options are commonly used in basic real options valuation techniques, the first part of the thesis addresses the problems of spread option pricing and hedging. We develop a new closed-form approximation method for pricing two-asset spread options. Numerical analysis shows that our method is more accurate than existing analytical approximations. Our method is also extremely fast, with computing time more than two orders of magnitude shorter than one-dimensional numerical integration. Closed-form approximations for the Greeks of spread options are also developed. In addition, we analyze the price sensitivities of spread options and provide lower and upper bounds for digital spread options. We then further generalize the above results to multi-asset spread options on an arbitrary number of assets. We provide two new closed-form approximation methods for pricing spread options on a basket of risky assets: the extended Kirk approximation and the second-order boundary approximation. Numerical analysis shows that both methods are extremely fast and accurate, with the latter method more accurate than the former. Closed-form approximations for important Greeks are also derived. Because our approximation methods enable the accurate pricing of a bulk volume of spread options on two or more assets in real time, it offers traders a potential edge in a dynamic market environment. In the third part of this thesis, we propose a market-based valuation framework for valuing natural gas storage facility with realistic operational characteristics. The operational process is modeled as a multi-stage stochastic optimization problem. We develop a Gaussian quadrature scheme to solve for the dynamically optimal spot trading strategy and show that the computational efficiency of this method exceeds existing approaches in about two orders of magnitude. Furthermore, with this flexible quadrature scheme, we propose to value a gas storage based on a novel hybrid trading strategy that successfully incorporates both spot and forward trading, thus improving the storage valuation significantly by accounting for both the inter-month and intra-month operational flexibilities and price volatility. In the fourth part of this work, we develop a continuous-time formulation for power plant valuation in infinite time horizon. We propose a real-option-based model for a power plant to account for the embedded operational flexibility. This model incorporates start-up and shut-down costs as two major operational constraints. Under this continuous valuation model, spark spread is modeled directly as a continuous stochastic process to take account of the long term co-integration relationship between electricity and fuel prices. Instead of discretizing the stochastic process, we preserve continuity of the stochastic spark spread process and work directly with the value function. Closed-form of value function under threshold policy is obtained. The corresponding optimal operational strategy can then be solved. The advantage of this approach is that it reduces computational complexity while incorporates major operation characteristics. It enables fast computation of a power plant value that approximates the real market value and sensitivity analysis of the asset value with respect to the cost parameters of a power plant and the distribution parameters of spark spread.
15

Structural Diversity in Crystal Chemistry: Rational Design Strategies Toward the Synthesis of Functional Metal-Organic Materials

Cairns, Amy J. 04 June 2010 (has links)
Metal-Organic Materials (MOMs) represent an important class of solid-state crystalline materials. Their countless attractive attributes make them uniquely suited to potentially resolve many present and future utilitarian societal challenges ranging from energy and the environment, all the way to include biology and medicine. Since the birth of coordination chemistry, the self-assembly of organic molecules with metal ions has produced a plethora of simple and complex architectures, many of which possess diverse pore and channel systems in a periodic array. In its infancy however this field was primarily fueled by burgeoning serendipitous discoveries, with no regard to a rational design approach to synthesis. In the late 1980s, the field was transformed when the potential for design was introduced through the seminal studies conducted by Hoskins and Robson who transcended the pivotal works of Wells into the experimental regime. The construction of MOMs using metal-ligand directed assembly is often regarded as the origin of the molecular building block (MBB) approach, a rational design strategy that focuses on the self-assembly of pre-designed MBBs having desired shapes and geometries to generate structures with intended topologies by exploiting the diverse coordination modes and geometries afforded by metal ions and organic molecules. The evolution of the MBB approach has witnessed tremendous breakthroughs in terms of scale and porosity by simply replacing single metal ions with more rigid inorganic metal clusters whilst preserving the inherent modularity and essential geometrical attributes needed to construct target networks for desired applications. The work presented in this dissertation focuses upon the rational design and synthesis of a diverse collection of open frameworks constructed from pre-fabricated rigid inorganic MBBs (i.e. [M(CO2)4], [M2(RCO2)4], [M3O(RCO2)6], MN3O3, etc), supermolecular building blocks (SBBs) and 3-, 4- and 6-connected organic MBBs. A systematic evaluation concerning the effect of various structural parameters (i.e. pore size and shape, metal ion, charge, etc) on hydrogen uptake and the relative binding affinity of H2-MOF interactions for selected systems is provided.
16

Design of an underground compressed hydrogen gas storage

Powell, Tobin Micah 14 February 2011 (has links)
Hydrogen has received significant attention throughout the past decade as the United States focuses on diversifying its energy portfolio to include sources of energy beyond fossil fuels. In a hydrogen economy, the most common use for hydrogen is in fuel cell vehicles. Advancements in on-board storage devices, investment in hydrogen production facilities nation-wide, development of a hydrogen transmission infrastructure, and construction of hydrogen fueling stations are essential to a hydrogen economy. This research proposes a novel underground storage technique to be implemented at a hydrogen fueling station. Three boreholes are drilled into the subsurface, with each borehole consisting of an outer pipe and an inner pipe. Hydrogen gas (H2) is stored in the inner tube, while the outer pipe serves to protect the inner pipe and contain any leaked gas. Three boreholes of varying pressures are necessary to maintain adequate inventory and sufficient pressure while filling vehicles to full tank capacity. The estimated cost for this storage system is $2.58 million. This dollar amount includes drilling and completion costs, steel pipe costs, the cost of a heavy-duty hydrogen compressor, and miscellaneous equipment expenses. Although the proposed design makes use of decades’ worth of experience and technical expertise from the oil and gas industry, there are several challenges—technical, economic, and social—to implementing this storage system. The impact of hydrogen embrittlement and the lack of a hydrogen transmission infrastructure represent the main technical impediments. Borehole H2 storage, as part of a larger hydrogen economy, reveals significant expenses beyond those calculated in the amount above. Costs related to delivering H2 to the filling station, electricity, miscellaneous equipment, and maintenance associated with hydrogen systems must also be considered. Public demand for hydrogen is low for several reasons, and significant misperceptions exist concerning the safety of hydrogen storage. Although the overall life-cycle emissions assessment of hydrogen fuel reveals mediocre results, a hydrogen economy impacts air quality less than current fossil-fuel systems. If and when the U.S. transitions to a hydrogen economy, the borehole storage system described herein is a feasible solution for on-site compressed H2 storage. / text
17

Neue, poröse metallorganische Gerüstverbindungen und organometallische Koordinationspolymere

Stoeck, Ulrich 26 March 2014 (has links) (PDF)
Ziel der vorliegenden Arbeit war zum einen die Entwicklung einer Synthesestrategie und deren praktischen Umsetzung zur Verwirklichung der Idee eines organometallischen Koordinationspolymers, in dem das verknüpfende Bindungsmotiv Metall-Kohlenstoff-Bindungen sind. Der zweite und größere Teil der Arbeit beschäftigte sich mit der Synthese von neuen metallorganischen Gerüstverbindungen auf der Basis von Carboxylatliganden. Diese sollten Eigenschaften besitzen, die sie als Gasspeichermaterialien, vor allem für Methan und Wasserstoff, geeignet erscheinen lassen. Durch Kombination von H3BTB und Co(NO3)2•6H2O wurde ein strukturell hochkomplexes MOF, DUT-28, erhalten, dessen hohe theoretisch, geometrisch berechnete Oberfläche (3875 m2/g) gute Gasspeichereigenschaften hätte erwarten lassen. Leider schlugen sämtliche Versuche, die metallorganische Gerüstverbindung in lösungsmittelfreier Form zu erzeugen, fehl. Es konnte gezeigt werden, dass sich die Raumgruppe, in der DUT-28 kristallisiert, bei Verringerung der Temperatur (298 K auf 100 K) von C2/m zu C2/c ändert. Die durch dieses Faktum implizierte strukturelle Flexibilität könnte ein Grund für das Scheitern aller Bemühungen, DUT-28 unter Erhalt der Struktur zu aktivieren, sein. Die Entdeckung eines metallorganischen Polyeders, bestehend aus sechs Kupferschaufelradeinheiten und 12 Carbazol-3,6-dicarbonsäuren, regte eine Änderung der Synthesestrategie für die Darstellung weiterer MOFs an. Im Gegensatz zu der explorativen Vorgehensweise bei der Synthese von DUT-28 wurden im Folgenden durch Anwendung des sogenannten SBB Konzepts vergleichsweise kontrolliert weitere hochporöse MOFs dargestellt. Das SBB Konzept beschreibt im Kern den Aufbau dreidimensionaler Strukturen durch geeignete Verknüpfung von metallorganischen Polyedern und wurde vor allem durch ZAWOROTKO und EDDAOUDI bekannt. Die Verknüpfung der MOPs kann dabei sowohl über koordinative als auch kovalente Bindungen erfolgen. Ausgehend von dem beschriebenen Carbazol-MOP wurden zwei verschiedene Strukturen generiert, die sich durch Reduktion der SBBs auf 12-konnektive Knoten, als fcu bzw. ftw-a beschreiben lassen. Beide Strukturen wurden jeweils einmal isoretikular erweitert. Im Fall des fcu Netzes wurden die Carbazole über ihren Stickstoff mit einer starren Phenylen (DUT-48) bzw. Biphenylen (DUT-49) verbunden. Zur Erzeugung des ftw-a Netzwerks wurde eine Carboxyphenyl- (DUT 75) bzw. Carboxybiphenyleinheit (DUT 76) an den Carbazolstickstoff gebunden (Abbildung 1). Alle vier Verbindungen müssen überkritisch mit Kohlendioxid getrocknet werden. Alle Verbindungen zeigen hohe bis sehr hohe Oberflächen und Porenvolumina und sehr gute bis herausragende Wasserstoffspeicher- und Methanspeicherkapazitäten. DUT-76 besitzt mit rund 6400 m2/g eine herausragende spezifische Oberfläche und mit 3,25 cm3/g ein sehr großes spezifisches Porenvolumen. Alle vier Verbindungen zeigen hohe bis sehr hohe gravimetrische Speicherkapazitäten für Wasserstoff und Methan. Dabei ragt DUT-49 mit einer Rekordkapazität für Methan von 308 mg/g, und DUT-76 mit einer Wasserstoffkapazität von 82 mg/g, heraus. Zusammenfassend ist festzuhalten, dass es gelungen ist, eine Reihe metallorganischer Gerüstverbindungen zu synthetisieren, die sehr hohe bzw. rekordbrechende Gasspeicherkapazitäten für die alternativen Energieträger Wasserstoff und Methan aufweisen. Zur Synthese eines organometallischen Koordinationspolymers wurde ein besonders stabiler Übergangsmetallolefinkomplex als Bindungsmotiv gewählt (Abbildung 2a). Dieser Komplex ist nur ein lineares Verknüpfungsmotiv. Zur Herstellung von Dreidimensionalität wurden vier 7-norbornadienylreste, in jeweils 4-Position an ein Tetraphenylsilangerüst geknüpft. Die Synthese des Liganden (TNPS, vgl. Abbildung 2b) gelang in einer kurzen Sequenz von 3 Stufen ausgehend von reinem Norbornadien. Der TNPS-Ligand wurde in einer Ligandenaustauschreaktion mit dem oben genannten Rhodium-Norbornadienkomplex umgesetzt. Dabei wurde eine amorphe, gelartige Substanz erhalten (DUT-37) (vgl. Abbildung 2c und 3a). Durch Röntgenabsorptionspektroskopie, NMR-Experimente und Elementaranalyse konnte gezeigt werden, dass tatsächlich ein Ligandenaustausch stattgefunden hat, und die Bindungsverhältnisse innerhalb des Festkörpers denen im monomeren Komplex entsprechen. DUT-37 konnte ebenfalls nur durch überkritische Trocknung als permanent poröses Material erhalten werden. In diesen Zustand besitzt es eine spezifische Oberfläche von 470 m2/g und ein spezifisches Porenvolumen von 0,38 cm3/g. Es zeigt eine für poröse Polymere charakteristische Hysterese über den gesamten Relativdruckbereich und ist im aktivierten Zustand über mehrere Wochen stabil gegenüber atmosphärischen Bedingungen. DUT-37 zeigt eine merkliche Kapazität für Kohlenstoffmonoxid bei Raumtemperatur. Ein großer Anteil der CO-Moleküle wird allerdings chemisorbiert, was durch IR-Messungen gezeigt werden konnte. Durch Wasserdampfphysisorption konnte eine relativ hohe Hydrophobizität des Materials gezeigt werden, die möglicherweise eine Ursache für die überraschende Stabilität von DUT-37 ist. Abschließend, ist DUT-37 katalytisch aktiv in der Transferhydrierung von Cyclohexanon mit 2-Propanol (Abbildung 3b). Zusammenfassend ist es gelungen, im Rahmen dieser Arbeit erstmals ein poröses organometallisches Koordinationspolymer zu synthetisieren. Dieses zeigte interessante Adsorptionseigenschaften, eine unerwartete Stabilität und katalytische Aktivität.
18

Simulation Of Depleted Gas Reservoir For Underground Gas Storage

Ozturk, Bulent 01 December 2004 (has links) (PDF)
For a natural gas importing country, &ldquo / take or pay&rdquo / approach creates problems since the demand for natural gas varies during the year and the excess amount of natural gas should be stored. In this study, an underground gas storage project is evaluated in a depleted gas Field M. After gathering all necessary reservoir, fluid, production and pressure data, the data were adapted to computer language, which was used in a commercial simulator software (IMEX) that is the CMG&rsquo / s (Computer Modelling Group) new generation adoptive simulator, to reach the history matching. The history matching which consists of the 4 year of production of the gas reservoir is the first step of this study. The simulation program was able to accomplish a good history match with the given parameters of the reservoir. Using the history match as a base, five different scenarios were created and forecast the injection and withdrawal performance of the reservoir. These scenarios includes 5 newly drilled horizontal wells which were used in combinations with the existing wells. With a predetermined injection rate of 13 MMcf/D was set for all the wells and among the 5 scenarios, 5 horizontal &ndash / 6 vertical injectors &amp / 5 horizontal - 6 vertical producers is the most successful in handling the gas inventory and the time it takes for a gas injection and production period. After the determination of the well configuration, the optimum injection rate for the entire field was obtained and found to be 130 MMcf/D by running different injection rates for all wells and then for only horizontal wells different injection rates were applied with a constant injection rate of 130 MMcf/d for vertical wells. Then it has been found that it is better to apply the 5th scenario which includes 5 horizontal &ndash / 6 vertical injectors &amp / 5 horizontal - 6 vertical producers having an injection rate of 130 MMcf/d for horizontal and vertical wells. Since within the 5th scenario, changing the injection rate to 1.3 Bcf/d and 13 Bcf/d, did not effect and change the average reservoir pressure significantly, it is best to carry out the project with the optimum injection rate which is 130 MMcf/d. The total gas produced untill 2012 is 394 BCF and the gas injected is 340 BCF where the maximum average reservoir pressure was recovered and set into a new value of 1881 psi by injection and cushion gas pressure as 1371 psi by withdrawal. If 5th scenario is compared with the others, there is an increase in injection and production performance about 90%.
19

Characterization Of Nanoporous Materials Using Gas Adsorption Isotherms: Evaluating Their Potential For Gas Storage And Separation Applications

Krungleviciute, Vaiva 01 January 2009 (has links)
In order to find/design porous materials that could be used in practical applications involving adsorption, it is important to investigate the basic properties (i.e. isosteric heat, specific surface area, binding energy, pore size, pore volume, etc.) of each material. With this aim in mind we have looked at three different types of materials: single-walled carbon nanotubes (prepared by the HiPco and laser methods), single-walled nanohorns (dahlia-like and bud-like) and metal-organic frameworks (Cu-BTC and RPM-1). For these substrates we have measured volumetric adsorption isotherms using several gases such as neon, argon, tetrafluoromethane (CF4), xenon, and methane (not all gases for all substrates). Experimental adsorption isotherms were measured using methane, argon, xenon, and neon gases on unpurified single-walled carbon nanotubes prepared by the HiPco method. The main idea behind these experiments was to investigate, using different size gas molecules, the sites available for adsorption on this type of porous material. We found that surface area occupied by these adsorbates on the sample is the same, regardless of their size. This means that all the gases have access to the same group of adsorption sites. Since the biggest adsorbate in this experiment was Xe, and since it is unlikely that it could penetrate the interstitial channels in the nanotube bundles, we conclude that none of the gases, including the smallest one - Ne, are able to adsorb in the interstitial channels in bundles of single-walled carbon nanotubes. For the case of argon on laser produced single-walled carbon nanotubes we measured 21 adsorption isotherms using argon gas temperatures between 40 and 153 K that were used to determine the isosteric heat of adsorption for this system. Our experimental results were compared to the ones from computer simulations performed by J. K. Johnson (from the University of Pittsburgh) for the same gas on heterogeneous and homogenous bundles. It was observed that the isosteric heat data matches better with data computed for heterogeneous nanotube bundles. This indicates that at the lowest pressure and coverages argon might be adsorbing in the defect-induced interstitial channels. We studied Cu3(Benzene-1,3,5-tricarboxylate)2(H2O)3 (abbreviated as Cu-BTC) metal-organic framework with argon to determine the sites available for adsorption on this material. Volumetric adsorption isotherms were measured at temperatures between 66 and 143 K. We found two substeps in the isotherm data, indicating that there are two types of pores present in the material: tetrahedrally-shaped side pockets and the main channels. Our experimental results were compared with data from simulations conducted using the Grand Canonical Monte Carlo method. We determined that the theoretical results match reasonably well with ours if the coverage is scaled down by a factor of 1.6. We explored the potential of two different metal-organic framework materials (Cu-BTC and RPM-1) for gas separation application. We used argon and tetrafluoromethane (CF4) gases to check if this can be achieved through kinetic and steric mechanisms. We found that Cu-BTC has excellent potential in gas separation using a steric mechanism, since argon easily adsorbs into the small pores present in the sample, while CF4 is excluded from them. Adsorption properties of RPM-1 showed that it could be employed in gas separation using a kinetic mechanism - argon gas adsorbs and reaches equilibrium in the pores of the sample more than the order of magnitude faster than CF4. Closed-ended dahlia-like nanohorns were studied with neon and tetrafluoromethane gases. In the first layer of neon and tetrafluoromethane adsorbed on dahlia-like nanohorns we found two substeps. These results were compared with results of computer simulations performed by Prof. M. Calbi. We determined, after comparison with the simulation isotherms, that the lower pressure substeps correspond to adsorption of Ne and CF4 in the narrowest parts of interstitial channels of the aggregates. Surface area calculated from neon isotherms was found to be higher than the one obtained using CF4, meaning that the smaller Ne molecule has the access to the parts of the interstitial channels that are not accessible for the bigger CF4 molecule. Features that appeared in neon adsorption isotherms on bud-like nanohorn aggregates were quite different from the ones on dahlia-like aggregates. We measured neon adsorption isotherms on this type of sample at temperatures between 22 and 49 K. In the monolayer regime we observed one single substep whose origin we can not definitely identify, because the structure of the bud-like nanohorns is not well-known. The binding energy value that was calculated from the isotherm data was lower than the value for neon adsorbed in the grooves of nanotube bundles but higher than for neon on graphite.
20

Estudos de Ciclos de Carga e Descarga de ReservatÃrios para Armazenamento de GÃs Natural Adsorvido / Estudies of charge and discharge cycles for natural gÃs (ANG) storage

MoisÃs Bastos Neto 21 October 2005 (has links)
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / Este estudo apresenta anÃlises de dados experimentais de ciclos de carga e descarga em um vaso protÃtipo de armazenamento de gÃs natural adsorvido (GNA) em um leito de carvÃo ativado, comparados com simulaÃÃes obtidas com um modelo matemÃtico proposto para prever o comportamento da pressÃo, temperatura mÃdia e massa armazenada e disponibilizada de gÃs natural num dado recipiente. Para validar o modelo, cada parÃmetro de entrada foi calculado independentemente atravÃs de anÃlises das caracterÃsticas texturais da amostra de carvÃo utilizada e do levantamento de isotermas de equilÃbrio de adsorÃÃo de metano no mesmo carvÃo. TambÃm foram determinadas as isotermas de adsorÃÃo de etano, propano e butano, constituintes do gÃs natural (GN) em menores proporÃÃes, para avaliaÃÃo da influÃncia da composiÃÃo na eficiÃncia do processo de armazenamento. As anÃlises das caracterÃsticas texturais foram conduzidas num aparato volumÃtrico atravÃs da obtenÃÃo de isotermas de nitrogÃnio a 77 K. Os dados de equilÃbrio de adsorÃÃo dos componentes do GN foram adquiridos com auxÃlio de uma balanÃa de suspensÃo magnÃtica. Numa etapa inicial foram utilizados experimentos com gÃs natural e simulaÃÃes com metano puro. Os resultados mostraram discrepÃncias nas previsÃes do modelo, conduzindo-nos à conclusÃo de que à inadequado assumir que o gÃs natural apresenta comportamento semelhante ao de seu componente em maior proporÃÃo, o metano, para este caso. A partir deste fato, as simulaÃÃes foram comparadas com experimentos usando metano puro e uma boa concordÃncia foi observada nas comparaÃÃes dos resultados. A pressÃo e a massa armazenada foram preditas satisfatoriamente bem e, apesar dos efeitos tÃrmicos nÃo precisamente levados em conta no modelo, foi observada uma concordÃncia razoavelmente boa entre simulaÃÃo e experimento para a temperatura mÃdia dentro do recipiente. Conclusivamente, o modelo foi satisfatÃrio para a previsÃo dos fenÃmenos envolvidos num processo de armazenamento de GNA. / This study presents experimental data analyses of charge and discharge cycles in a prototype vessel of adsorbed natural gas (ANG) storage in a bed of activated carbon, compared with simulations obtained with a mathematical model proposed to foresee the behavior of pressure, average temperature and stored mass and delivery of natural gas in a given reservoir. To validate the model, each input parameter was independently calculated through analyses of the used carbon sampleâs textural characteristics and the acquirement of adsorption equilibrium isotherms of methane in the same carbon sample. It was also obtained the adsorption isotherms of ethane, propane and butane, constituent of the natural gas (NG) in smaller proportions, for evaluation of the composition influence in the storage process efficiency. The textural characteristics analyses were run in a volumetric apparatus through the obtaining of nitrogen isotherms at 77 K. The adsorption equilibrium data of the NG components were acquired with the support of a magnetic suspension balance. In an initial stage, it was used experiments with natural gas and simulations with pure methane. The results showed discrepancies in the model prediction, leading to the conclusion that it is inadequate to assume that the natural gas presents behavior similar to the one of its larger proportion component, methane, for this case. Consequently, in another stage, simulations were compared with experiments using pure methane and a good agreement was observed in the results comparisons. Histories of pressure and stored mass were satisfactorily well predicted and, despite heat effects, not precisely taken into account in the model, there was a reasonably good agreement between simulation and experiment for the average temperature inside the vessel. Conclusively, the model was suitable for the prediction of the phenomena involved in an ANG storage process.

Page generated in 0.1737 seconds