Spelling suggestions: "subject:"sas turbines"" "subject:"sas àturbines""
261 |
Numerical investigation of the sensitivity of forced response characteristics of bladed disks to mistuningMyhre, Mikkel January 2003 (has links)
Two state of the art finite element reduction techniquespreviously validated against the direct finite element method,one based on classical modal analysis and another based oncomponent mode synthesis, are applied for efficient mistunedfree vibration and forced response analysis of several bladeddisk geometries. The methods are first applied to two testcases in order to demonstrate the differences in computationalefficiency as well as to validate the methods againstexperimental data. As previous studies have indicated, nonoticeable differences in accuracy are detected for the currentapplications, while the method based on classical modalanalysis is significantly more efficient. Experimental data(mistuned frequencies and mode shapes) available for one of thetwo test cases are compared with numerical predictions, and agood match is obtained, which adds to the previous validationof the methods (against the direct finite element method). The influence of blade-to-blade coupling and rotation speedon the sensitivity of bladed disks to mistuning is thenstudied. A transonic fan is considered with part span shroudsand without shrouds, respectively, constituting a high and alow blade-to-blade coupling case. For both cases, computationsare performed at rest as well as at various rotation speeds.Mistuning sensitivity is modelled as the dependence ofamplitude magnification on the standard deviation of bladestiffnesses. The finite element reduction technique based onclassical modal analysis is employed for the structuralanalysis. This reduced order model is solved for sets of randomblade stiffnesses with various standard deviations, i.e. MonteCarlo simulations. In order to reduce the sample size, thestatistical data is fitted to a Weibull (type III) parametermodel. Three different parameter estimation techniques areapplied and compared. The key role of blade-to-blade coupling,as well as the ratio of mistuning to coupling, is demonstratedfor the two cases. It is observed that mistuning sensitivityvaries significantly with rotation speed for both fans due toan associated variation in blade-to-blade coupling strength.Focusing on the effect of one specific engine order on themistuned response of the first bending modes, it is observedthat the mistuning sensitivity behaviour of the fan withoutshrouds is unaffected by rotation at its resonant condition,due to insignificant changes in coupling strength at thisspeed. The fan with shrouds, on the other hand, shows asignificantly different behaviour at rest and resonant speed,due to increased coupling under rotation. Comparing the twocases at resonant rotor speeds, the fan without shrouds is lessor equally sensitive to mistuning than the fan with shrouds inthe entire range of mistuning strengths considered. This thesisscientific contribution centres on themistuning sensitivity study, where the effects of shrouds androtation speed are quantified for realistic bladed diskgeometries. However, also the validation of two finite elementreduction techniques against experimental measurementsconstitutes an important contribution. / NR 20140805
|
262 |
Aerodynamics of Endwall Contouring with Discrete Holes and an Upstream Purge Slot Under Transonic Conditions with and without BlowingBlot, Dorian Matthew 23 January 2013 (has links)
Endwall contouring has been widely studied as an effective measure to improve aerodynamic performance by reducing secondary flow strength. The effects of endwall contouring with discrete holes and an upstream purge slot for a high turning (127") airfoil passage under transonic conditions are investigated. The total pressure loss and secondary flow field were measured for two endwall geometries. The non-axisymmetric endwall was developed through an optimization study [1] to minimize secondary losses and is compared to a baseline planar endwall. The blade inlet span increased by 13 degrees with respect to the inlet in order to match engine representative inlet/exit Mach number loading in a HP turbine. The experiments were performed in a quasi-2D linear cascade with measurements at design exit Mach number 0.88 and incidence angle. Four cases were analyzed for each endwall -- the effect of slot presence (with/without coolant) and the effect of discrete holes (with/without coolant) without slot injection. The coolant to mainstream mass flow ratio was set at 1.0% and 0.25% for upstream purge slot and discrete holes, respectively. Aerodynamic loss coefficient is calculated with the measured exit total pressure at 0.1 Cax downstream of the blade trailing edge. CFD studies were conducted in compliment. The aero-optimized endwall yielded lower losses than baseline without the presence of the slot. However, in presence of the slot, losses increased due to formation of additional vortices. For both endwall geometries, results reveal that the slot has increased losses, while the addition of coolant further influences secondary flow development. / Master of Science
|
263 |
Conceptual design of an HTGR system for a total energy application.Shin, Jae In January 1975 (has links)
Thesis. 1975. Nucl.E.--Massachusetts Institute of Technology. Dept. of Nuclear Engineering. / Bibliography: leaves 153-157. / Nucl.E.
|
264 |
Comparison Of Square-hole And Round-hole Film Cooling: A Computational StudyDurham, Michael Glenn 01 January 2004 (has links)
Film cooling is a method used to protect surfaces exposed to high-temperature flows such as those that exist in gas turbines. It involves the injection of secondary fluid (at a lower temperature than that of the main flow) that covers the surface to be protected. This injection is through holes that can have various shapes; simple shapes such as those with a straight circular (by drilling) or straight square (by EDM) cross-section are relatively easy and inexpensive to create. Immediately downstream of the exit of a film cooling hole, a so-called horseshoe vortex structure consisting of a pair of counter-rotating vortices is formed. This vortex formation has an effect on the distribution of film coolant over the surface being protected. The fluid dynamics of these vortices is dependent upon the shape of the film cooling holes, and therefore so is the film coolant coverage which determines the film cooling effectiveness distribution and also has an effect on the heat transfer coefficient distribution. Differences in horseshoe vortex structures and in resultant effectiveness distributions are shown for circular and square hole cases for blowing ratios of 0.33, 0.50, 0.67, 1.00, and 1.33. The film cooling effectiveness values obtained are compared with experimental and computational data of Yuen and Martinez-Botas (2003a) and Walters and Leylek (1997). It was found that in the main flow portion of the domain immediately downstream of the cooling hole exit, there is greater lateral separation between the vortices in the horseshoe vortex pair for the case of the square hole. This was found to result in the square hole providing greater centerline film cooling effectiveness immediately downstream of the hole and better lateral film coolant coverage far downstream of the hole.
|
265 |
Film Cooling With Wake Passing Applied To An Annular EndwallTran, Nghia Trong 01 January 2010 (has links)
Advancement in turbine technology has far reaching effects on today's society and environment. With more than 90% of electricity and 100% of commercial air transport being produced by the usage of gas turbine, any advancement in turbine technology can have an impact on fuel used, pollutants and carbon dioxide emitted to the environment. Within the turbine engine, fully understanding film cooling is critical to reliability of a turbine engine. Film cooling is an efficient way to protect the engine surface from the extremely hot incoming gas, which is at a temperature much higher than allowable temperature of even the most advanced super alloy used in turbine. Film cooling performance is affected by many factors: geometrical factors and as well as flow conditions. In most of the film cooling literature, film effectiveness has been used as criterion to judge and/or compare between film cooling designs. Film uniformity is also a critical factor, since it determines how well the coolant spread out downstream to protect the hot-gas-path surface of a gas turbine engine. Even after consideration of all geometrical factors and flow conditions, the film effectiveness is still affected by the stator-rotor interaction, in particular by the moving wakes produced by upstream airfoils. A complete analysis of end wall film cooling inside turbine is required to fully understand the phenomena. This full analysis is almost impossible in the academic arena. Therefore, a simplified but critical experimental rig and computational fluid model were designed to capture the effect of wake on film cooling inside an annular test section. The moving wakes are created by rotating a wheel iv with 12 spokes or rods with a variable speed motor. Thus changing the motor speed will alter the wake passing frequency. This design is an advancement over most previous studies in rectangular duct, which cannot simulate wakes in an annular passage as in an engine. This rig also includes film injection that allows study of impact of moving wakes on film cooling. This wake is a simplified representation of the trailing edge created by an upstream airfoil. An annulus with 30° pitch test section is considered in this study. This experimental rig is based on an existing flat plate film cooling (BFC) rig that has been validated in the past. Measurement of velocity profiles within the moving wake downstream from the wake generator is used to validate the CFD rotating wake model. The open literature on film cooling and past experiments performed in the laboratory validated the CFD film cooling model. With these validations completed, the full CFD model predicts the wake and film cooling interaction. Nine CFD cases were considered by varying the film cooling blowing ratio and the wake Strouhal number. The results indicated that wakes highly enhance film cooling effectiveness near film cooling holes and degrades the film blanket downstream of the film injection, at the moment of wake passing. However, the time-averaged film cooling effectiveness is more or less the same with or without wake
|
266 |
Design and experimental evaluation of a dynamic thermal distortion generator for turbomachinery researchDiPietro, Anthony Louis 29 September 2009 (has links)
This thesis involves the design and experimental evaluation of a dynamic thermal distortion generator for turbomachinery research. The detailed design of a thermal distortion generator, its individual components, and its associated hardware was performed. Details of the preliminary design concepts and also the combustion test cell are discussed. Instruments and controls were developed and installed to regulate the distortion generator’s operation and to obtain data. The complete geometry of the thermal distortion generator and the layout of the combustion test cell was established. Operating and safety procedures were also established.
A set of experiments was conducted to confirm the operation of the thermal distortion generator and to obtain experimental data. This data was used to visualize the dynamics of the thermal distortions produced and to show the temperature ramps produced by the generator. This data was used to verify that the distortion generator operated correctly and met all of the design constraints and requirements set forth. / Master of Science
|
267 |
Hydrogen-Methane combustion modeling in the burner of the SGT-800 Siemens Energy gas turbineBozikis, Nikolaos January 2022 (has links)
Industrial gas turbines constitute an integral part of today’s electricalpower production infrastructure. Reacting gas flows in these machines arevery interesting and complex in nature since they exhibit highly turbulentbehaviour which is strongly coupled to the chemical reaction dynamics.Thus developing accurate CFD models for such flows while keeping thecomputational expense reasonable is a non-trivial task. In this studyLarge-Eddy simulations of hydrogen-methane fuel mixture combustion inthe SGT800’s (Siemens Energy Gas turbine 800) burner, in atmosphericconditions are performed using the CFD code Starccm+ (versions 16.04and 16.06).
|
268 |
Informing Physics-Based Particle Deposition Models Using Novel Experimental Techniques to Evaluate Particle-Surface InteractionsWhitaker, Steven Michael January 2017 (has links)
No description available.
|
269 |
Flame Interactions and Thermoacoustics in Multiple-Nozzle CombustorsDolan, Brian January 2016 (has links)
No description available.
|
270 |
Showerhead Film Cooling Performance of a Turbine Vane at High Freestream Turbulence in a Transonic CascadeNasir, Shakeel 01 September 2008 (has links)
One way to increase cycle efficiency of a gas turbine engine is to operate at higher turbine inlet temperature (TIT). In most engines, the turbine inlet temperatures have increased to be well above the metallurgical limit of engine components. Film cooling of gas turbine components (blades and vanes) is a widely used technique that allows higher turbine inlet temperatures by maintaining material temperatures within acceptable limits. In this cooling method, air is extracted from the compressor and forced through internal cooling passages within turbine blades and vanes before being ejected through discrete cooling holes on the surfaces of these airfoils. The air leaving these cooling holes forms a film of cool air on the component surface which protects the part from hot gas exiting the combustor.
Design optimization of the airfoil film cooling system on an engine scale is a key as increasing the amount of coolant supplied yields a cooler airfoil that will last longer, but decreases engine core flow—diminishing overall cycle efficiency. Interestingly, when contemplating the physics of film cooling, optimization is also a key to developing an effective design. The film cooling process is shown to be a complex function of at least two important mechanisms: Increasing the amount of coolant injected reduces the driving temperature (adiabatic wall temperature) of convective heat transfer—reducing heat load to the airfoil, but coolant injection also disturbs boundary layer and augments convective heat transfer coefficient due to local increase in freestream turbulence.
Accurate numerical modeling of airfoil film cooling performance is a challenge as it is complicated by several factors such as film cooling hole shape, coolant-to-freestream blowing ratio, coolant-to-freestream momentum ratio, surface curvature, approaching boundary layer state, Reynolds number, Mach number, combustor-generated high freestream turbulence, turbulence length scale, and secondary flows just to name a few. Until computational methods are able to accurately simulate these factors affecting film cooling performance, experimental studies are required to assist engineers in designing effective film cooling schemes.
The unique contribution of this research work is to experimentally and numerically investigate the effects of coolant injection rate or blowing ratio and exit Reynolds number/Mach number on the film cooling performance of a showerhead film cooled first stage turbine vane at high freestream turbulence (Tu = 16%) and engine representative exit flow conditions. The vane was arranged in a two-dimensional, linear cascade in a heated, transonic, blow-down wind tunnel. The same facility was also used to conduct experimental and numerical study of the effects of freestream turbulence, and Reynolds number on smooth (without film cooling holes) turbine blade and vane heat transfer at engine representative exit flow conditions. The showerhead film cooled vane was instrumented with single-sided platinum thin film gauges to experimentally determine the Nusselt number and film cooling effectiveness distributions over the surface from a single transient-temperature run. Showerhead film cooling was found to augment Nusselt number and reduce adiabatic wall temperature downstream of injection. The adiabatic effectiveness trend on the suction surface was also found to be influenced by a favorable pressure gradient due to Mach number and boundary layer transition region at all blowing ratio and exit Mach number conditions.
The experimental study was also complimented with a 3-D CFD effort to calculate and explain adiabatic film cooling effectiveness and Nusselt number distributions downstream of the showerhead film cooling rows of a turbine vane at high freestream turbulence (Tu = 16%) and engine design exit flow condition (Mex = 0.76). The research work presents a new three-simulations technique to calculate vane surface recovery temperature, adiabatic wall temperature, and surface Nusselt number to completely characterize film cooling performance in a high speed flow. The RANS based v2-f turbulence model was used in all numerical calculations. CFD calculations performed with experiment-matched boundary conditions showed an overall good trend agreement with experimental adiabatic film cooling effectiveness and Nusselt number distributions downstream of the showerhead film cooling rows of the vane. / Ph. D.
|
Page generated in 0.0461 seconds