• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 36
  • 15
  • 14
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 156
  • 156
  • 32
  • 31
  • 27
  • 24
  • 23
  • 21
  • 20
  • 20
  • 20
  • 19
  • 19
  • 19
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Use of Instabilities in Electrostatic Micro-Electro-Mechanical Systems for Actuation and Sensing

Khater, Mahmoud Elsayed January 2011 (has links)
This thesis develops methods to exploit static and dynamic instabilities in electrostatic MEMS to develop new MEMS devices, namely dynamically actuated micro switches and binary micro gas sensors. Models are developed for the devices under consideration where the structures are treated as elastic continua. The electrostatic force is treated as a nonlinear function of displacement derived under the assumption of parallel-plate theorem. The Galerkin method is used to discretize the distributed-parameter models, thus reducing the governing partial differential equations into sets of nonlinear ordinary-differential equations. The shooting method is used to numerically solve those equations to obtain the frequency-response curves of those devices and the Floquet theory is used to investigate their stability. To develop the dynamically actuated micro switches, we investigate the response of microswitches to a combination of DC and AC excitations. We find that dynamically actuated micro switches can realize significant energy savings, up to 60 %, over comparable switches traditionally actuated by pure DC voltage. We devise two dynamic actuation methods: a fixed-frequency method and a shifted-frequency method. While the fixed-frequency method is simpler to implement, the shifted-frequency method can minimize the switching time to the same order as that realized using traditional DC actuation. We also introduce a parameter identification technique to estimate the switch geometrical and material properties, namely thickness, modulus of elasticity, and residual stress. We also develop a new detection technique for micro mass sensors that does not require any readout electronics. We use this method to develop static and dynamic binary mass sensors. The sensors are composed of a cantilever beam connected to a rigid plate at its free end and electrostatically coupled to an electrode underneath it. Two versions of micro mass sensors are presented: static binary mass sensor and dynamic binary mass sensor. Sensitivity analysis shows that the sensitivity of our static mass sensor represents an upper bound for the sensitivity of comparable statically detected inertial mass sensors. It also shows that the dynamic binary mass sensors is three orders of magnitude more sensitive than the static binary mass sensor. We equip our mass sensor with a polymer detector, doped Polyaniline, to realize a formaldehyde vapor sensor and demonstrate its functionality experimentally. We find that while the static binary gas sensor is simpler to realize than the dynamic binary gas sensor, it is more susceptible to external disturbances.
52

Optical detection of CO and H2 based on surface plasmon resonance with Ag-YSZ, Au and Ag-Cu nanoparticle films

Kitenge, Denis 01 June 2009 (has links)
Silver, gold, and copper metallic nanoparticle films have been utilized in various MEMS devices due to not only their electrical but also their optical properties. The focus of this research is to study the detection at room temperature of carbon monoxide (CO) and hydrogen (H2) via Surface Plasmon Resonance (SPR) phenomenon of silver-embedded Yttrium Stabilized Zirconium (Ag-YSZ) nanocomposite film, gold (Au) nanoparticle film, and an alloy film of silver-copper (Ag-Cu) , grown by the Pulsed Laser Deposition (PLD). To determine the appropriate film materials for quick and accurate CO and H2 detection at room temperature with the PLD technique, the growth process was done repeatedly. Optical tools such as X-Ray Diffraction, Alpha Step 200 Profilometer, Atomic Force Microscopy, and Scanning Electron Microscopy were used to characterize thin films. The gas sensing performance was studied by monitoring the SPR band peak behavior via UV/vis spectrophotometer when the films were exposed to CO and H2 and estimating the percent change in wavelength. The metallic nanoparticle films were tested for concentration of CO (100 to 1000 ppm) and H2 (1 to 10%). Silver based sensors were tested for the cross-selectivity of the gases. Overall the sensors have a detection limit of 100 ppm for CO and show a noticeable signal for H2 in the concentration range as low as 1%. The metallic films show stable sensing over a one-hour period at room temperature. The SPR change by UV/vis spectrophotometer shows a significant shift of 623 nm wavelength between 100 ppm CO gas and dry air at room temperature for the alloy films of Ag-Cu with a wider curve as compared to silver and gold films upon their exposure to CO and H2 indicating an improvement in accuracy and quick response. The results indicate that in research of CO and H2 detection at room temperature, optical gas sensors rather than metal oxide sensors are believed to be effective due to not only the absence of chemical involvement in the process but also the sensitivity improvement and accuracy, much needed characteristics of sensors when dealing with such hazardous gases.
53

Interactive Wireless Sensor for Remote Trace Detection and Recognition of Hazardous Gases

Lama, Audrey 01 December 2013 (has links)
The interactive wireless sensor detects many hazardous gases such as Hexane, Propane, Carbon monoxide and Hydrogen. These gases are highly toxic and used in different kinds of manufacturing industries, domestic purpose and so on. So, building a sensor that can detect this kind of gases can save the environment; prevent the potential for explosion, and endangering human life. In long term, interactive wireless sensor can also prevent the financial losses that might occur due to the hazardous incident that might occur due to these toxic gases. Hexane is a colorless, strong gas which inhaled in significant amounts by a person then he may suffer with hexane poisoning and suffocation. It also causes skin burns when exposed in high concentrations. Propane, carbon monoxide and hydrogen can easily freeze in room temperature, if in contact with eye, it could permanently damage eye or cause blindness. The advantage of this wireless sensor is the use of artificial olfactory system (electronic nose) that can be taught to detect these hazardous gases. This sensor has a unique molecular combination of analysts, impurities and background that corresponds to a gas leak. It consists of a chemiresistor, such as an array of conductometric sensors, and a mechanism analyzing the data in real time. A smell-print is composed of many molecules which reaches receptor in the human nose. When a specific receptor receives a molecule, it sends a signal to the brain where the smell is identified and associated with that particular molecule. Similar manner, albeit substituting sensors for the receptors, and transmitting the signal to a machine learning algorithm for processing, rather than to the brain. This wireless gas leak sensing consists of microchip Pic 32, integrated electronic nose, automated data analysis unit, power supply, and communications. The communication channel will use the ZigBee link, or the cellular links, or other specific frequency wireless link. The time-stamped and position-stamped sensor measurement data are transmitted to the central computer in predetermined periods of time. The data will be stored in the computer database for possible future analysis of the gas leak development process.
54

GAS SENSING PROPERTIES AND TRANSPORT PROPERTIES OF MULTI WALLED CARBON NANOTUBES

Mangu, Raghu 01 January 2008 (has links)
Multi walled carbon nanotubes (MWCNT) grown in highly ordered porous alumina templates were incorporated into a resistive gas sensor design and were evaluated for their sensitivities. The material characteristics and electrical properties of the nanotubes were analyzed. A study was undertaken to elucidate the effect of UV light on desorption characteristics and the dependence of sensitivity on (i) thickness of amorphous carbon layers and (ii) flow rates of analyte gases. These sensors were highly responsive to both oxidizing and reducing gases with steady state sensitivities of 5% and 10% for 100ppm of NH3 and NO2 respectively, at room temperature. As part of a comparative study, thick films of MWCNTs grown on Si/SiO2 substrates were integrated into various nano-composite based sensors and were evaluated for their response. Steady state sensitivities as high as 10% and 11% were achieved for 100ppm of NH3 and NO2 respectively, at room temperature. MWCNTs were characterized for their electrical properties by I–V measurements at room temperatures. A typical I-V curve with an ohmic behavior was observed for a device with high work function metals (example: Au, Pt); Schottky behavior was observed for devices with metal contacts having low work functions (example: Al, Cu).
55

Use of Instabilities in Electrostatic Micro-Electro-Mechanical Systems for Actuation and Sensing

Khater, Mahmoud Elsayed January 2011 (has links)
This thesis develops methods to exploit static and dynamic instabilities in electrostatic MEMS to develop new MEMS devices, namely dynamically actuated micro switches and binary micro gas sensors. Models are developed for the devices under consideration where the structures are treated as elastic continua. The electrostatic force is treated as a nonlinear function of displacement derived under the assumption of parallel-plate theorem. The Galerkin method is used to discretize the distributed-parameter models, thus reducing the governing partial differential equations into sets of nonlinear ordinary-differential equations. The shooting method is used to numerically solve those equations to obtain the frequency-response curves of those devices and the Floquet theory is used to investigate their stability. To develop the dynamically actuated micro switches, we investigate the response of microswitches to a combination of DC and AC excitations. We find that dynamically actuated micro switches can realize significant energy savings, up to 60 %, over comparable switches traditionally actuated by pure DC voltage. We devise two dynamic actuation methods: a fixed-frequency method and a shifted-frequency method. While the fixed-frequency method is simpler to implement, the shifted-frequency method can minimize the switching time to the same order as that realized using traditional DC actuation. We also introduce a parameter identification technique to estimate the switch geometrical and material properties, namely thickness, modulus of elasticity, and residual stress. We also develop a new detection technique for micro mass sensors that does not require any readout electronics. We use this method to develop static and dynamic binary mass sensors. The sensors are composed of a cantilever beam connected to a rigid plate at its free end and electrostatically coupled to an electrode underneath it. Two versions of micro mass sensors are presented: static binary mass sensor and dynamic binary mass sensor. Sensitivity analysis shows that the sensitivity of our static mass sensor represents an upper bound for the sensitivity of comparable statically detected inertial mass sensors. It also shows that the dynamic binary mass sensors is three orders of magnitude more sensitive than the static binary mass sensor. We equip our mass sensor with a polymer detector, doped Polyaniline, to realize a formaldehyde vapor sensor and demonstrate its functionality experimentally. We find that while the static binary gas sensor is simpler to realize than the dynamic binary gas sensor, it is more susceptible to external disturbances.
56

Statistical gas distribution modelling for mobile robot applications

Reggente, Matteo January 2014 (has links)
In this dissertation, we present and evaluate algorithms for statistical gas distribution modelling in mobile robot applications. We derive a representation of the gas distribution in natural environments using gas measurements collected with mobile robots. The algorithms fuse different sensors readings (gas, wind and location) to create 2D or 3D maps. Throughout this thesis, the Kernel DM+V algorithm plays a central role in modelling the gas distribution. The key idea is the spatial extrapolation of the gas measurement using a Gaussian kernel. The algorithm produces four maps: the weight map shows the density of the measurements; the confidence map shows areas in which the model is considered being trustful; the mean map represents the modelled gas distribution; the variance map represents the spatial structure of the variance of the mean estimate. The Kernel DM+V/W algorithm incorporates wind measurements in the computation of the models by modifying the shape of the Gaussian kernel according to the local wind direction and magnitude. The Kernel 3D-DM+V/W algorithm extends the previous algorithm to the third dimension using a tri-variate Gaussian kernel. Ground-truth evaluation is a critical issue for gas distribution modelling with mobile platforms. We propose two methods to evaluate gas distribution models. Firstly, we create a ground-truth gas distribution using a simulation environment, and we compare the models with this ground-truth gas distribution. Secondly, considering that a good model should explain the measurements and accurately predicts new ones, we evaluate the models according to their ability in inferring unseen gas concentrations. We evaluate the algorithms carrying out experiments in different environments. We start with a simulated environment and we end in urban applications, in which we integrated gas sensors on robots designed for urban hygiene. We found that typically the models that comprise wind information outperform the models that do not include the wind data.
57

Couches minces organo-siliciées déposées par PECVD pour la fonctionnalisation de capteurs de gaz / PECVD organosilicate thin films for gas sensor functionalization

El Sabahy, Julien 17 December 2015 (has links)
La détection de gaz est un enjeu de plus en plus important, aussi bien dans le domaine de la surveillance de la qualité de l’air -intérieur et extérieur- que dans le suivi de procédés. Cet enjeu est d’autant plus critique dans le cas des composés organiques volatiles (COVs) que leur impact sur la santé publique est avéré. Détecter et quantifier leur présence devient une problématique majeure et différentes solutions existent. L’une d’elles, basée sur le couplage d’une nano-poutre résonnante et d’une micro colonne de chromatographie, s’avère être une solution prometteuse. Ces deux dispositifs alliant sélectivité et grande sensibilité nécessitent cependant une fonctionnalisation à l’aide d’une couche sensible. Ces travaux se sont focalisés sur le développement de matériaux sensibles de la famille des SiOCH déposés en couche mince par dépôt chimique en phase vapeur assisté par plasma (PECVD). L’étude de la réponse sous gaz des différents matériaux synthétisés au cours de cette thèse a été réalisée à l’aide de microbalances à cristal de quartz (QCM). Les mesures obtenues ont ensuite été corrélées à un modèle simple permettant de proposer une interprétation de l’interaction entre les SiOCH et le gaz d’intérêt, à l’équilibre mais aussi en régime dépendant du temps. La première partie de l’étude montre l’impact de la composition chimique de ces matériaux sur leur affinité envers un gaz représentatif des COVs aromatiques : le toluène. En s’appuyant sur des caractérisations physico-chimiques, le rôle de différentes liaisons chimiques ainsi que celui de l’hydrophobie des couches minces sur l’interaction avec le gaz d’intérêt a été analysé. Ces travaux montrent qu’un compromis entre composition chimique et hydrophobie doit être trouvé afin de préserver affinité et temps de réponse des SiOCH. L’étude de l’influence de la porosité sur la sensibilité a ensuite été abordée dans un second temps. Pour cela, des procédés originaux de réalisation de couches minces poreuses ont été développés afin de proposer de nouveaux matériaux poreux et d’accroître leur sensibilité vis-à-vis du toluène. Les limites de l’approche soustractive généralement utilisée pour ce type de matériau (i.e. l’approche porogène) ont pu ainsi être dépassées en termes de porosité et de tailles de pores. Concernant la détection de gaz, il s’avère difficile de décorréler l’impact de la chimie de celui de la porosité. Quoi qu’il en soit, l’augmentation de la porosité ouverte n’apparait pas comme le seul paramètre pertinent pour accroître la sensibilité de ces matériaux aux faibles concentrations. / Gas detection is a growing field, both for indoor and outdoor air quality monitoring and for process monitoring. It is indeed particularly critical in the case of volatile organic compounds (VOC) whose impact on public health is proven. Detecting and quantifying their presence becomes a major problem and various solutions are available. One of them, based on the coupling of a resonant beam and a chromatography micro column, appears to be a promising solution. Those two devices combine selectivity and high sensitivity; however, they require functionalization with a sensitive layer. This work focused on SiOCH thin films deposited by PECVD. The gas interaction of the sensitive layers deposited during this work was studied using quartz crystal microbalances (QCM). The obtained measurements were then correlated to a simple model, providing an interpretation of the interaction – for steady-state but also kinetic regime - between the SiOCH and the gas of interest. The first part of the study shows the impact of the chemical composition of those materials on their affinity for toluene, representative for aromatic VOCs. Relying on physico-chemical characterization techniques, the role of various chemical bonds on the solid/gas interaction was investigated. This work shows that a compromise between chemical composition and hydrophobicity has to be reached to preserve SiOCH affinity and temporal response. The influence of porosity was then explored in a second step to further increase the sensitivity of those materials. Original deposition processes were developed in order to propose new porous materials with higher toluene affinity. The limits of the subtractive approach generally used for these PECVD materials (i.e. the porogen approach) were then overcome in terms of porosity and pore size. Concerning gas detection, it is difficult to decorrelate between the impact of chemistry and porosity. Whatever, increasing porosity does not appear to be the only relevant parameter in order to increase these materials affinity at low concentrations.
58

Comparação da resposta como sensor de gás de dispositivos com nanofita única e com múltiplas nanofitas de óxido de estanho / Gas sensor response of devices made up by multiples and single tin dioxide-based nanobelts

Masteghin, Mateus Gallucci 06 June 2018 (has links)
Submitted by Mateus Gallucci Masteghin (mgmasteghin@gmail.com) on 2018-06-26T11:25:57Z No. of bitstreams: 1 masteghin_mg_me_araiq_int.pdf: 9325879 bytes, checksum: ad179c16b4a7ebea4933249a05a03ba1 (MD5) / Approved for entry into archive by Ana Carolina Gonçalves Bet null (abet@iq.unesp.br) on 2018-06-28T17:19:59Z (GMT) No. of bitstreams: 1 masteghin_mg_me_araiq_int.pdf: 9325879 bytes, checksum: ad179c16b4a7ebea4933249a05a03ba1 (MD5) / Made available in DSpace on 2018-06-28T17:19:59Z (GMT). No. of bitstreams: 1 masteghin_mg_me_araiq_int.pdf: 9325879 bytes, checksum: ad179c16b4a7ebea4933249a05a03ba1 (MD5) Previous issue date: 2018-06-06 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Nesse trabalho, realizou-se um estudo a fim de compreender os mecanismos de transporte e as interações gás-sólido que ocorrem na superfície de nanoestruturas de SnO, Sn3O4 e SnO2, preparadas em diferentes dispositivos. Com o objetivo de se obter uma melhor compreensão dos fenômenos envolvidos, optou-se por estudar, individualmente e coletivamente (única e mútiplas), as nanofitas de cada uma das três composições, sendo que o primeiro método permite descartar interferências extrínsecas, analisando-se apenas os mecanismos intrínsecos de condução nas nanoestruturas, sem a presença de barreiras de potencias geradas pelo contato semicondutor/semicondutor e, na maioria dos casos, sem o possível contato não-ôhmico metal/semicondutor. Para isso, os materiais foram sintetizados pelo método de redução carbotérmica e, posteriormente, foram caracterizados por DRX, Raman, UV-Vis e MEV-FEG para confirmar a eficácia da síntese, parte fundamental para a obtenção de resultados confiáveis. Os materiais também foram caracterizados em relação à sua resposta como sensor de gás na presença de gases oxidantes e redutores (por exemplo, NO2 e CO) em baixas concentrações (na escala de ppm) e em temperaturas de trabalho entre 100 °C e 350°C, sendo que para atingir tais temperaturas utilizou-se o método convencional de aquecimento e o método de self-heating, sendo o último promissor por não necessitar de fonte externa para realizar o aquecimento, gerando economia de energia e possibilitando maior mobilidade na detecção de vazamentos. As principais novidades deste trabalho são a caracterização individual de nanofitas de Sn3O4 e des micro-discos de SnO como sensor de gás, o estudo da resposta sensora de nanofitas de mesma composição química com diferentes diâmetros (em nano escala), permitindo o cálculo da camada de depleção (comprimento de Debye) para cada estequiometria, e na escolha do método self-heating de aquecimento para o estudo sensor das estruturas de SnO e Sn3O4. Para realizar esses estudos, fabricou-se dispositivos individuais utilizando trilhas interdigitais e eletrodos específicos em um equipamento de feixe duplo (Focused Ion Beam - FIB) equipado para realizar litografia eletrônica. Deste modo, a principal contribuição do trabalho para a literatura será o estudo das interações sólido-gás em materiais termodinamicamente instáveis (SnO e Sn3O4), no estudo de como o gás analito influencia na espessura da camada de depressão (indiretamente, nas propriedades sensoras) e na utilização de um novo método de sensoriamento de gás (self-heating) para estes materiais. Ao final, espera-se que todo este estudo permita o desenvolvimento de materiais sensores com elevada sensibilidade, seletividade, rápido tempo de resposta e capacidade de miniaturização, sendo essa última característica muito importante quando almeja-se futuras aplicações práticas desse material em dispositivos eletrônicos portáteis. / In the following work, it was carried out a study in order to understand the transport mechanisms and the gas-solid interactions that occur on the surface of SnO, Sn3O4, and SnO2 nanostructures, made-up over different devices. As the main goal of a better understanding regarding involved interaction phenomena, it was chosen to study the nanostructures individually (single-element devices) and as multiple structures (carpet mode devices), in which the former allows to discard extrinsic interferences, such as potential Schottky-type barriers as a result of the semiconductor/semiconductor contact, and in the most of the cases when dealing with single-element devices, without the possible metal/semiconductor non-ohmic contact. Thus, the materials were synthesized by the carbothermal reduction method and characterized by XRD, Raman Spectroscopy, UV-Vis light measurements, and SEM-FEG. The materials were investigated as gas sensors, using oxidizing and reducing gases (such as NO2 and CO) in low concentration levels (ppm), and with working temperatures ranging from 100 °C to 300 °C. These working temperatures were reached using the conventional heating and the self-heating methods, the latter being advantageous for not requiring an external source to the heating, resulting in low dissipated power and allowing higher mobility when seeking for in-situ leakage detections. The highlighted contributions from this work are the Sn3O4 nanobelts and SnO micro-disks characterization as single-element gas sensor devices and the study of different diameters of the same material (nanobelts with same oxidation state), that allowed to calculate the depletion layer length (Debye length) for each stoichiometry; besides the use of the self-heating method in the gas sensor study of SnO and Sn3O4. In the end, the author wishes that all the study performed allows the development of gas sensor devices with high sensitivity, selectivity, fast response and recovery times, and the miniaturization capability. / FAPESP: 2015/21033-0 & BEPE-FAPESP: 2017/12870-0
59

Développement et optimisation de capteurs de gaz à base de silicium : analyse des composés organiques volatils contenus dans l’air expiré par les patients atteints d’insuffisance cardiaque / Development and optimization of gas sensors based on silicon substrate : analysis of volatile organic compounds contained in exhaled breath of patients with heart failure

Boudjaoui, Selim 06 July 2018 (has links)
Les travaux développés dans ce manuscrit de thèse entrent dans le cadre du projet européen intitulé « Hearten », « A co-operative mHealth environment targeting adherence and management of patients suffering from Heart Failure (HF) ». Les acteurs de ce projet cherchent à développer une plateforme réseau multi compétences dont le but est le diagnostic précoce et le suivi des patients atteints d'insuffisance cardiaque. Elle permet l'enregistrement de différents paramètres vitaux de ces patients, comme la pression artérielle, le poids, les biomolécules contenus dans les biofluides, et leur consultation immédiate par les différents acteurs en charge du suivi des patients. L'objectif des travaux de recherche présentés dans ce manuscrit est de développer un capteur de gaz conductimétrique portable et miniaturisé, permettant la mesure en temps réel des VOCs caractéristiques du syndrome HF dans l'air expiré par les patients. La molécule d'acétone, connue dans la littérature pour être l'un des biomarqueurs les plus discriminants d'HF, a été particulièrement ciblée. Le capteur ainsi conçu est formé de paires de microélectrodes interdigitées (µIDEs) en or déposées sur substrat de silicium. La partie sensible du capteur consiste en une membrane polymérique électro-déposée à la surface du capteur qui est sensible à l'acétone. Les paramètres géométriques des µIDES ont été analysés et optimisés au cours de ces travaux afin d'améliorer la réponse et la sensibilité du capteur. Une plateforme d'analyse des gaz contenant l'ensemble de l'instrumentation associée à notre capteur a été développé. Les paramètres de l'instrumentation ont également été analysés et optimisés dans le même but. Nous avons ainsi étudié deux types de membranes polymériques sensibles à l'acétone. La première couche sensible développée est basée sur la co-polymérisation d'un polymère et de nanomatériaux dopants, le chitosan et les zéolites. La seconde couche sensible développée est quant à elle basée sur la co-polymérisation de polypyrrole et de métallophthalocyanines. Le capteur développé présente des performances optimales pour ce projet, dont notamment une limite de détection de l'ordre du ppm, ainsi que des temps de réponse et de recouvrement très courts. L'utilisation de ce capteur dans le cas de mesures cliniques est ainsi très prometteuse puisqu'il permet d'analyser plusieurs échantillons en temps réel, et ceux sur une durée de fonctionnement de plus d'une semaine. Le diagnostic rapide et la prise en charge du patient est donc facilité grâce à ce dispositif, dont les couts de fabrication sont très réduits / The work presented in this manuscript is part of the European project « Hearten », « A co-operative mHealth environment targeting adherence and management of patients suffering from Heart Failure (HF) ». The actors of this project are seeking for developing a multi-competence network platform whose goal is the early diagnosis and follow-up of patients with heart failure. It allows the recording of various vital parameters of these patients, such as blood pressure, weight, biomolecules contained in biofluids, and their immediate consultation by the different actors in charge of patient follow-up.The objective of research presented in this manuscript is to develop a portable conductometric gas sensor, allowing the measurement of characteristic VOCs of HF syndrome in exhaled air by patients. Acetone molecule, known in the literature as one of the most discriminating biomarkers of HF, has been particularly targeted. The sensor thus designed is based on pairs of gold interdigitated microelectrode etched on a silicon substrate. The sensitive part of the sensor consists of a polymeric membrane sensitive to acetone and electro-deposited on the surface of the sensor. The geometrical parameters of the µIDES have been analyzed and optimized during these works to improve the response and sensitivity of the sensor. A gas analysis platform including all the instrumentation associated with our sensor has been developed. The instrumentation parameters have also been analyzed and optimized for the same purpose.We studied two types of polymeric membranes sensitive to acetone. The first sensitive layer developed was based on the co-polymerization of a polymer and doping nanomaterials, chitosan and zeolites. The second sensitive layer developed was based on the co-polymerization of polypyrrole and metallophthalocyanines. The developed sensor provides optimal performance for this project, including a detection limit in the order of ppm level, as well as very short response and recovery times. The sensor can therefore be considered in the case of clinical measurements.The use of this sensor in the case of clinical measurements is very promising because it allows to analyze several samples in real time, and those over a period of operation of more than one week. Rapid diagnosis and patient management is therefore facilitated by this device, whose manufacturing costs are very low
60

Portable Sensors for Breath Analysis

January 2013 (has links)
abstract: Human breath is a concoction of thousands of compounds having in it a breath-print of physiological processes in the body. Though breath provides a non-invasive and easy to handle biological fluid, its analysis for clinical diagnosis is not very common. Partly the reason for this absence is unavailability of cost effective and convenient tools for such analysis. Scientific literature is full of novel sensor ideas but it is challenging to develop a working device, which are few. These challenges include trace level detection, presence of hundreds of interfering compounds, excessive humidity, different sampling regulations and personal variability. To meet these challenges as well as deliver a low cost solution, optical sensors based on specific colorimetric chemical reactions on mesoporous membranes have been developed. Sensor hardware utilizing cost effective and ubiquitously available light source (LED) and detector (webcam/photo diodes) has been developed and optimized for sensitive detection. Sample conditioning mouthpiece suitable for portable sensors is developed and integrated. The sensors are capable of communication with mobile phones realizing the idea of m-health for easy personal health monitoring in free living conditions. Nitric oxide and Acetone are chosen as analytes of interest. Nitric oxide levels in the breath correlate with lung inflammation which makes it useful for asthma management. Acetone levels increase during ketosis resulting from fat metabolism in the body. Monitoring breath acetone thus provides useful information to people with type1 diabetes, epileptic children on ketogenic diets and people following fitness plans for weight loss. / Dissertation/Thesis / Ph.D. Chemistry 2013

Page generated in 0.0509 seconds