• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude de la fiabilité des technologies CMOS avancées, depuis la création des défauts jusqu'à la dégradation des transistors

Mamy Randriamihaja, Yoann 02 November 2012 (has links)
L'étude de la fiabilité représente un enjeu majeur de la qualification des technologies de l'industrie de la microélectronique. Elle est traditionnellement étudiée en suivant la dégradation des paramètres des transistors au cours du temps, qui sert ensuite à construire des modèles physiques expliquant le vieillissement des transistors. Nous avons fait le choix dans ces travaux d'étudier la fiabilité des transistors à l'échelle microscopique, en nous intéressant aux mécanismes de ruptures de liaisons atomiques à l'origine de la création des défauts de l'oxyde de grille. Nous avons tout d'abord identifié la nature des défauts et modéliser leurs dynamiques de capture de charges afin de pouvoir reproduire leur impact sur des mesures électriques complexes. Cela nous a permis de développer une nouvelle méthodologie de localisation des défauts, le long de l'interface Si-SiO2, ainsi que dans le volume de l'oxyde. La mesure des dynamiques de créations de défauts pour des stress de type porteurs chauds et menant au claquage de l'oxyde de grille nous a permis de développer des modèles de dégradation de l'oxyde, prédisant les profils de défauts créés à l'interface et dans le volume de l'oxyde. Nous avons enfin établi un lien précis entre l'impact de la dégradation d'un transistor sur la perte de fonctionnalité d'un circuit représentatif du fonctionnement d'un produit digital.L'étude et la modélisation de la fiabilité à l'échelle microscopique permet d'avoir des modèles plus physiques, offrant ainsi une plus grande confiance dans les extrapolations de durées de vie des transistors et des produits. / Reliability study is a milestone of microelectronic industry technology qualification. It is usually studied by following the degradation of transistors parameters with time, used to build physical models explaining transistors aging. We decided in this work to study transistors reliability at a microscopic scale, by focusing on atomic-bond-breaking mechanisms, responsible of defects creation into the gate-oxide. First, we identified defects nature and modeled their charge capture dynamics in order to reproduce their impact on complex electrical measurements degradation. This has allowed us developing a new methodology of defects localization, along the Si/SiO2 interface, and in the volume of the gate-oxide. Defects creation dynamics measurement, for Hot Carrier stress and stress conditions leading to the gate-oxide breakdown, has allowed us developing gate-oxide degradation models, predicting generated defect profiles at the interface and into the volume of the gate-oxide. Finally, we established an accurate link between a transistor degradation impact on circuit functionality loss.Reliability study and modeling at a microscopic scale allows having more physical models, granting a better confidence in transistors and products lifetime extrapolation.
2

Study Of Gate Oxide Breakdown And Hot Electron Effect On Cmos Circuit Performances

Ma, Jun 01 January 2009 (has links)
In the modern semiconductor world, there is a significant scaling of the transistor dimensions--The transistor gate length and the gate oxide thickness drop down to only several nanometers. Today the semiconductor industry is already dominated by submicron devices and other material devices for the high transistor density and performance enhancement. In this case, the semiconductor reliability issues are the most important thing for commercialization. The major reliability issues caused by voltage are hot carrier effects (HCs) and gate oxide breakdown (BD) effects. These issues are recently more important to industry, due to the small size and high lateral field in short-channel of the device will cause high electrical field and other reliability issues. This dissertation primarily focuses on the study of the CMOS device gate oxide breakdown effect on different kinds of circuits performance, also some HC effects on circuit's performance are studied. The physical mechanisms for BD have been presented. A practical and accurate equivalent breakdown circuit model for the CMOS device was studied to simulate the RF performance degradation on the circuit level. The BD location effect has been evaluated. Furthermore, a methodology was developed to predict the BD effects on the circuit's performances with different kinds of BD location. It also provides guidance for the reliability considerations of the digital, analog, and RF circuit design. The BD effects on digital circuits SRAM, analog circuits Sample&Hold, and RF building blocks with the nanoscale device--low noise amplifier, LC oscillator, mixer, and power amplifier, have been investigated systematically. Finally 90 nm device will be used to study the HC effect on the circuit's performance. The contributions of this dissertation include: Providing a thorough study of the gate oxide breakdown issues caused by the voltage stress on the device--from device level to circuit level; Studying real voltage stress case--high frequency (950 MHz) dynamic stress, and comparing with the traditional DC stress; A simple, practical, and analytical method is derived to study the gate oxide breakdown effect including breakdown location effect and soft / hard breakdown on the digital, analog and RF circuits performances. A brief introduction and simulation for 90 nm device HC effect provide some useful information and helpful data for the industry. The gate oxide breakdown effect is the most common device reliability issue. The successful results of this dissertation, from device level to circuit level, provide an insight on how the BD affects the circuit's performance, and also provide some useful data for the circuit designers in their future work.
3

System-level modeling and reliability analysis of microprocessor systems

Chen, Chang-Chih 12 January 2015 (has links)
Frontend and backend wearout mechanisms are major reliability concerns for modern microprocessors. In this research, a framework which contains modules for negative bias temperature instability (NBTI), positive bias temperature instability (PBTI), hot carrier injection (HCI), gate-oxide breakdown (GOBD), backend time-dependent dielectric breakdown (BTDDB), electromigration (EM), and stress-induced voiding (SIV) is proposed to analyze the impact of each wearout mechanism on state-of-art microprocessors and to accurately estimate microprocessor lifetimes due to each wearout mechanism. Taking into account the detailed thermal profiles, electrical stress profiles and a variety of use scenarios, composed of a fraction of time in operation, a fraction of time in standby, and a fraction of time when the system is off, this work provides insight into lifetime-limiting wearout mechanisms, along with the reliability-critical microprocessor functional units for a system. This enables circuit designers to know if their designs will achieve an adequate lifetime and further make any updates in the designs to enhance reliability prior to committing the designs to manufacture.

Page generated in 0.0733 seconds