• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 137
  • 11
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 225
  • 225
  • 52
  • 43
  • 41
  • 37
  • 31
  • 30
  • 29
  • 28
  • 26
  • 26
  • 25
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Comparative study of a time diversity scheme applied to G3 systems for narrowband power-line communications

Rivard, Yves-François January 2016 (has links)
A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in ful lment of the requirements for the degree of Masters of Science in Engineering (Electrical). Johannesburg, 2016 / Power-line communications can be used for the transfer of data across electrical net- works in applications such as automatic meter reading in smart grid technology. As the power-line channel is harsh and plagued with non-Gaussian noise, robust forward error correction schemes are required. This research is a comparative study where a Luby transform code is concatenated with power-line communication systems provided by an up-to-date standard published by electricit e R eseau Distribution France named G3 PLC. Both decoding using Gaussian elimination and belief propagation are imple- mented to investigate and characterise their behaviour through computer simulations in MATLAB. Results show that a bit error rate performance improvement is achiev- able under non worst-case channel conditions using a Gaussian elimination decoder. An adaptive system is thus recommended which decodes using Gaussian elimination and which has the appropriate data rate. The added complexity can be well tolerated especially on the receiver side in automatic meter reading systems due to the network structure being built around a centralised agent which possesses more resources. / MT2017
152

Machine Learning for Forecasting Signal Strength in Mobile Networks

Prihodko, Nikolajs January 2018 (has links)
In this thesis we forecast the future signal strength of base stations in mobile networks. Better forecasts might improve handover of mobile phones between base stations, thus improving overall user experience. Future values are forecast using a series of past sig- nal strength measurements. We use vector autoregression (VAR), a multilayer perceptron (MLP), and a gated recurrent unit (GRU) network. Hyperparameters, including the set of lags, of these models are optimised using Bayesian optimisation (BO) with Gaussian pro- cess (GP) priors. In addition to BO of the VAR model, we optimise the set of lags in it using a standard bottom-up and top-down heuristic. Both approaches result in similar predictive mean squared error (MSE) for the VAR model, but BO requires fewer model estimations. The GRU model provides the best predictive performance out of the three models. How- ever, none of the models (VAR, MLP, or GRU) achieves the accuracy required for practical applicability of the results. Therefore, we suggest adding more information to the model or reformulating the problem.
153

Multi-layer designs and composite gaussian process models with engineering applications

Ba, Shan 21 May 2012 (has links)
This thesis consists of three chapters, covering topics in both the design and modeling aspects of computer experiments as well as their engineering applications. The first chapter systematically develops a new class of space-filling designs for computer experiments by splitting two-level factorial designs into multiple layers. The new design is easy to generate, and our numerical study shows that it can have better space-filling properties than the optimal Latin hypercube design. The second chapter proposes a novel modeling approach for approximating computationally expensive functions that are not second-order stationary. The new model is a composite of two Gaussian processes, where the first one captures the smooth global trend and the second one models local details. The new predictor also incorporates a flexible variance model, which makes it more capable of approximating surfaces with varying volatility. The third chapter is devoted to a two-stage sequential strategy which integrates analytical models with finite element simulations for a micromachining process.
154

Error Propagation and Metamodeling for a Fidelity Tradeoff Capability in Complex Systems Design

McDonald, Robert Alan 07 July 2006 (has links)
Complex man-made systems are ubiquitous in modern technological society. The national air transportation infrastructure and the aircraft that operate within it, the highways stretching coast-to-coast and the vehicles that travel on them, and global communications networks and the computers that make them possible are all complex systems. It is impossible to fully validate a systems analysis or a design process. Systems are too large, complex, and expensive to build test and validation articles. Furthermore, the operating conditions throughout the life cycle of a system are impossible to predict and control for a validation experiment. Error is introduced at every point in a complex systems design process. Every error source propagates through the complex system in the same way information propagates, feedforward, feedback, and coupling are all present with error. As with error propagation through a single analysis, error sources grow and decay when propagated through a complex system. These behaviors are made more complex by the complex interactions of a complete system. This complication and the loss of intuition that accompanies it make proper error propagation calculations even more important to aid the decision maker. Error allocation and fidelity trade decisions answer questions like: Is the fidelity of a complex systems analysis adequate, or is an improvement needed, and how is that improvement best achieved? Where should limited resources be invested for the improvement of fidelity? How does knowledge of the imperfection of a model impact design decisions based on the model and the certainty of the performance of a particular design? In this research, a fidelity trade environment was conceived, formulated, developed, and demonstrated. This development relied on the advancement of enabling techniques including error propagation, metamodeling, and information management. A notional transport aircraft is modeled in the fidelity trade environment. Using the environment, the designer is able to make design decisions while considering error and he is able to make decisions regarding required tool fidelity as the design problem continues. These decisions could not be made in a quantitative manner before the fidelity trade environment was developed.
155

A pareto frontier intersection-based approach for efficient multiobjective optimization of competing concept alternatives

Rousis, Damon 01 July 2011 (has links)
The expected growth of civil aviation over the next twenty years places significant emphasis on revolutionary technology development aimed at mitigating the environmental impact of commercial aircraft. As the number of technology alternatives grows along with model complexity, current methods for Pareto finding and multiobjective optimization quickly become computationally infeasible. Coupled with the large uncertainty in the early stages of design, optimal designs are sought while avoiding the computational burden of excessive function calls when a single design change or technology assumption could alter the results. This motivates the need for a robust and efficient evaluation methodology for quantitative assessment of competing concepts. This research presents a novel approach that combines Bayesian adaptive sampling with surrogate-based optimization to efficiently place designs near Pareto frontier intersections of competing concepts. Efficiency is increased over sequential multiobjective optimization by focusing computational resources specifically on the location in the design space where optimality shifts between concepts. At the intersection of Pareto frontiers, the selection decisions are most sensitive to preferences place on the objectives, and small perturbations can lead to vastly different final designs. These concepts are incorporated into an evaluation methodology that ultimately reduces the number of failed cases, infeasible designs, and Pareto dominated solutions across all concepts. A set of algebraic samples along with a truss design problem are presented as canonical examples for the proposed approach. The methodology is applied to the design of ultra-high bypass ratio turbofans to guide NASA's technology development efforts for future aircraft. Geared-drive and variable geometry bypass nozzle concepts are explored as enablers for increased bypass ratio and potential alternatives over traditional configurations. The method is shown to improve sampling efficiency and provide clusters of feasible designs that motivate a shift towards revolutionary technologies that reduce fuel burn, emissions, and noise on future aircraft.
156

Hessian-based response surface approximations for uncertainty quantification in large-scale statistical inverse problems, with applications to groundwater flow

Flath, Hannah Pearl 11 September 2013 (has links)
Subsurface flow phenomena characterize many important societal issues in energy and the environment. A key feature of these problems is that subsurface properties are uncertain, due to the sparsity of direct observations of the subsurface. The Bayesian formulation of this inverse problem provides a systematic framework for inferring uncertainty in the properties given uncertainties in the data, the forward model, and prior knowledge of the properties. We address the problem: given noisy measurements of the head, the pdf describing the noise, prior information in the form of a pdf of the hydraulic conductivity, and a groundwater flow model relating the head to the hydraulic conductivity, find the posterior probability density function (pdf) of the parameters describing the hydraulic conductivity field. Unfortunately, conventional sampling of this pdf to compute statistical moments is intractable for problems governed by large-scale forward models and high-dimensional parameter spaces. We construct a Gaussian process surrogate of the posterior pdf based on Bayesian interpolation between a set of "training" points. We employ a greedy algorithm to find the training points by solving a sequence of optimization problems where each new training point is placed at the maximizer of the error in the approximation. Scalable Newton optimization methods solve this "optimal" training point problem. We tailor the Gaussian process surrogate to the curvature of the underlying posterior pdf according to the Hessian of the log posterior at a subset of training points, made computationally tractable by a low-rank approximation of the data misfit Hessian. A Gaussian mixture approximation of the posterior is extracted from the Gaussian process surrogate, and used as a proposal in a Markov chain Monte Carlo method for sampling both the surrogate as well as the true posterior. The Gaussian process surrogate is used as a first stage approximation in a two-stage delayed acceptance MCMC method. We provide evidence for the viability of the low-rank approximation of the Hessian through numerical experiments on a large scale atmospheric contaminant transport problem and analysis of an infinite dimensional model problem. We provide similar results for our groundwater problem. We then present results from the proposed MCMC algorithms. / text
157

A computational model of engineering decision making

Heller, Collin M. 13 January 2014 (has links)
The research objective of this thesis is to formulate and demonstrate a computational framework for modeling the design decisions of engineers. This framework is intended to be descriptive in nature as opposed to prescriptive or normative; the output of the model represents a plausible result of a designer's decision making process. The framework decomposes the decision into three elements: the problem statement, the designer's beliefs about the alternatives, and the designer's preferences. Multi-attribute utility theory is used to capture designer preferences for multiple objectives under uncertainty. Machine-learning techniques are used to store the designer's knowledge and to make Bayesian inferences regarding the attributes of alternatives. These models are integrated into the framework of a Markov decision process to simulate multiple sequential decisions. The overall framework enables the designer's decision problem to be transformed into an optimization problem statement; the simulated designer selects the alternative with the maximum expected utility. Although utility theory is typically viewed as a normative decision framework, the perspective in this research is that the approach can be used in a descriptive context for modeling rational and non-time critical decisions by engineering designers. This approach is intended to enable the formalisms of utility theory to be used to design human subjects experiments involving engineers in design organizations based on pairwise lotteries and other methods for preference elicitation. The results of these experiments would substantiate the selection of parameters in the model to enable it to be used to diagnose potential problems in engineering design projects. The purpose of the decision-making framework is to enable the development of a design process simulation of an organization involved in the development of a large-scale complex engineered system such as an aircraft or spacecraft. The decision model will allow researchers to determine the broader effects of individual engineering decisions on the aggregate dynamics of the design process and the resulting performance of the designed artifact itself. To illustrate the model's applicability in this context, the framework is demonstrated on three example problems: a one-dimensional decision problem, a multidimensional turbojet design problem, and a variable fidelity analysis problem. Individual utility functions are developed for designers in a requirements-driven design problem and then combined into a multi-attribute utility function. Gaussian process models are used to represent the designer's beliefs about the alternatives, and a custom covariance function is formulated to more accurately represent a designer's uncertainty in beliefs about the design attributes.
158

Optimal Active Learning: experimental factors and membership query learning

Yu-hui Yeh Unknown Date (has links)
The field of Machine Learning is concerned with the development of algorithms, models and techniques that solve challenging computational problems by learning from data representative of the problem (e.g. given a set of medical images previously classified by a human expert, build a model to predict unseen images as either benign or malignant). Many important real-world problems have been formulated as supervised learning problems. The assumption is that a data set is available containing the correct output (e.g. class label or target value) for each given data point. In many application domains, obtaining the correct outputs (labels) for data points is a costly and time-consuming task. This has provided the motivation for the development of Machine Learning techniques that attempt to minimize the number of labeled data points while maintaining good generalization performance on a given problem. Active Learning is one such class of techniques and is the focus of this thesis. Active Learning algorithms select or generate unlabeled data points to be labeled and use these points for learning. If successful, an Active Learning algorithm should be able to produce learning performance (e.g test set error) comparable to an equivalent supervised learner using fewer labeled data points. Theoretical, algorithmic and experimental Active Learning research has been conducted and a number of successful applications have been demonstrated. However, the scope of many of the experimental studies on Active Learning has been relatively small and there are very few large-scale experimental evaluations of Active Learning techniques. A significant amount of performance variability exists across Active Learning experimental results in the literature. Furthermore, the implementation details and effects of experimental factors have not been closely examined in empirical Active Learning research, creating some doubt over the strength and generality of conclusions that can be drawn from such results. The Active Learning model/system used in this thesis is the Optimal Active Learning algorithm framework with Gaussian Processes for regression problems (however, most of the research questions are of general interest in many other Active Learning scenarios). Experimental and implementation details of the Active Learning system used are described in detail, using a number of regression problems and datasets of different types. It is shown that the experimental results of the system are subject to significant variability across problem datasets. The hypothesis that experimental factors can account for this variability is then investigated. The results show the impact of sampling and sizes of the datasets used when generating experimental results. Furthermore, preliminary experimental results expose performance variability across various real-world regression problems. The results suggest that these experimental factors can (to a large extent) account for the variability observed in experimental results. A novel resampling technique for Optimal Active Learning, called '3-Sets Cross-Validation', is proposed as a practical solution to reduce experimental performance variability. Further results confirm the usefulness of the technique. The thesis then proposes an extension to the Optimal Active Learning framework, to perform learning via membership queries via a novel algorithm named MQOAL. The MQOAL algorithm employs the Metropolis-Hastings Markov chain Monte Carlo (MCMC) method to sample data points for query selection. Experimental results show that MQOAL provides comparable performance to the pool-based OAL learner, using a very generic, simple MCMC technique, and is robust to experimental factors related to the MCMC implementation. The possibility of making queries in batches is also explored experimentally, with results showing that while some performance degradation does occur, it is minimal for learning in small batch sizes, which is likely to be valuable in some real-world problem domains.
159

Optimal Active Learning: experimental factors and membership query learning

Yu-hui Yeh Unknown Date (has links)
The field of Machine Learning is concerned with the development of algorithms, models and techniques that solve challenging computational problems by learning from data representative of the problem (e.g. given a set of medical images previously classified by a human expert, build a model to predict unseen images as either benign or malignant). Many important real-world problems have been formulated as supervised learning problems. The assumption is that a data set is available containing the correct output (e.g. class label or target value) for each given data point. In many application domains, obtaining the correct outputs (labels) for data points is a costly and time-consuming task. This has provided the motivation for the development of Machine Learning techniques that attempt to minimize the number of labeled data points while maintaining good generalization performance on a given problem. Active Learning is one such class of techniques and is the focus of this thesis. Active Learning algorithms select or generate unlabeled data points to be labeled and use these points for learning. If successful, an Active Learning algorithm should be able to produce learning performance (e.g test set error) comparable to an equivalent supervised learner using fewer labeled data points. Theoretical, algorithmic and experimental Active Learning research has been conducted and a number of successful applications have been demonstrated. However, the scope of many of the experimental studies on Active Learning has been relatively small and there are very few large-scale experimental evaluations of Active Learning techniques. A significant amount of performance variability exists across Active Learning experimental results in the literature. Furthermore, the implementation details and effects of experimental factors have not been closely examined in empirical Active Learning research, creating some doubt over the strength and generality of conclusions that can be drawn from such results. The Active Learning model/system used in this thesis is the Optimal Active Learning algorithm framework with Gaussian Processes for regression problems (however, most of the research questions are of general interest in many other Active Learning scenarios). Experimental and implementation details of the Active Learning system used are described in detail, using a number of regression problems and datasets of different types. It is shown that the experimental results of the system are subject to significant variability across problem datasets. The hypothesis that experimental factors can account for this variability is then investigated. The results show the impact of sampling and sizes of the datasets used when generating experimental results. Furthermore, preliminary experimental results expose performance variability across various real-world regression problems. The results suggest that these experimental factors can (to a large extent) account for the variability observed in experimental results. A novel resampling technique for Optimal Active Learning, called '3-Sets Cross-Validation', is proposed as a practical solution to reduce experimental performance variability. Further results confirm the usefulness of the technique. The thesis then proposes an extension to the Optimal Active Learning framework, to perform learning via membership queries via a novel algorithm named MQOAL. The MQOAL algorithm employs the Metropolis-Hastings Markov chain Monte Carlo (MCMC) method to sample data points for query selection. Experimental results show that MQOAL provides comparable performance to the pool-based OAL learner, using a very generic, simple MCMC technique, and is robust to experimental factors related to the MCMC implementation. The possibility of making queries in batches is also explored experimentally, with results showing that while some performance degradation does occur, it is minimal for learning in small batch sizes, which is likely to be valuable in some real-world problem domains.
160

Recurrent gaussian processes and robust dynamical modeling

Mattos, César Lincoln Cavalcante 25 August 2017 (has links)
MATTOS, C. L. C. Recurrent gaussian processes and robust dynamical modeling. 2017. 189 f. Tese (Doutorado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Renato Vasconcelos (ppgeti@ufc.br) on 2017-09-09T02:26:38Z No. of bitstreams: 1 2017_tes_clcmattos.pdf: 5961013 bytes, checksum: fc44d8b852e28fa0e1ebe0c87389c0da (MD5) / Rejected by Marlene Sousa (mmarlene@ufc.br), reason: Prezado César; Prezado Pedro: Existe uma orientação para que normalizemos as dissertações e teses da UFC, em suas paginas pré-textuais e lista de referencias, pelas regras da ABNT. Por esse motivo, sugerimos consultar o modelo de template, para ajudá-lo nesta tarefa, disponível em: http://www.biblioteca.ufc.br/educacao-de-usuarios/templates/ Vamos agora as correções sempre de acordo com o template: 1. A partir da folha de aprovação as informações devem ser em língua inglesa. 2. A dedicatória deve ter a distancia até o final da folha observado. Veja no guia www.bibliotecas.ufc.br 3. A epígrafe deve ter a distancia até o final da folha observado. Veja no guia www.bibliotecas.ufc.br 4. As palavras List of Figures, LIST OF ALGORITHMS, List of Tables, Não devem ter caixa delimitando e nem ser na cor vermelha. 5. O sumário Não deve ter caixa delimitando e nem ser na cor vermelha. Nas seções terciárias, os dígitos também ficam em itálico. Os Apêndices e seus títulos, devem ficar na mesma margem da Palavra Referencias e devem iniciar com APENDICE A - Seguido do titulo. Após essas correções, enviaremos o nada consta por e-mail. Att. Marlene Rocha mmarlene@ufc.br on 2017-09-11T13:44:25Z (GMT) / Submitted by Renato Vasconcelos (ppgeti@ufc.br) on 2017-09-11T20:04:00Z No. of bitstreams: 1 2017_tes_clcmattos.pdf: 6102703 bytes, checksum: 34d9e125c70f66ca9c095e1bc6bfb7e7 (MD5) / Rejected by Marlene Sousa (mmarlene@ufc.br), reason: Lincoln, Falta apenas vc colocar no texto em português a palavra RESUMO (nesse caso não é traduzido pois se refere ao resumo em língua portuguesa) pois vc colocou ABSTRACT duas vezes para o texto em português e inglês. on 2017-09-12T11:06:29Z (GMT) / Submitted by Renato Vasconcelos (ppgeti@ufc.br) on 2017-09-12T14:05:11Z No. of bitstreams: 1 2017_tes_clcmattos.pdf: 6102699 bytes, checksum: 0a85b8841d77f0685b1153ee8ede0d85 (MD5) / Approved for entry into archive by Marlene Sousa (mmarlene@ufc.br) on 2017-09-12T16:29:17Z (GMT) No. of bitstreams: 1 2017_tes_clcmattos.pdf: 6102699 bytes, checksum: 0a85b8841d77f0685b1153ee8ede0d85 (MD5) / Made available in DSpace on 2017-09-12T16:29:18Z (GMT). No. of bitstreams: 1 2017_tes_clcmattos.pdf: 6102699 bytes, checksum: 0a85b8841d77f0685b1153ee8ede0d85 (MD5) Previous issue date: 2017-08-25 / The study of dynamical systems is widespread across several areas of knowledge. Sequential data is generated constantly by different phenomena, most of them we cannot explain by equations derived from known physical laws and structures. In such context, this thesis aims to tackle the task of nonlinear system identification, which builds models directly from sequential measurements. More specifically, we approach challenging scenarios, such as learning temporal relations from noisy data, data containing discrepant values (outliers) and large datasets. In the interface between statistics, computer science, data analysis and engineering lies the machine learning community, which brings powerful tools to find patterns from data and make predictions. In that sense, we follow methods based on Gaussian Processes (GP), a principled, practical, probabilistic approach to learning in kernel machines. We aim to exploit recent advances in general GP modeling to bring new contributions to the dynamical modeling exercise. Thus, we propose the novel family of Recurrent Gaussian Processes (RGPs) models and extend their concept to handle outlier-robust requirements and scalable stochastic learning. The hierarchical latent (non-observed) structure of those models impose intractabilities in the form of non-analytical expressions, which are handled with the derivation of new variational algorithms to perform approximate deterministic inference as an optimization problem. The presented solutions enable uncertainty propagation on both training and testing, with focus on free simulation. We comprehensively evaluate the proposed methods with both artificial and real system identification benchmarks, as well as other related dynamical settings. The obtained results indicate that the proposed approaches are competitive when compared to the state of the art in the aforementioned complicated setups and that GP-based dynamical modeling is a promising area of research. / O estudo dos sistemas dinâmicos encontra-se disseminado em várias áreas do conhecimento. Dados sequenciais são gerados constantemente por diversos fenômenos, a maioria deles não passíveis de serem explicados por equações derivadas de leis físicas e estruturas conhecidas. Nesse contexto, esta tese tem como objetivo abordar a tarefa de identificação de sistemas não lineares, por meio da qual são obtidos modelos diretamente a partir de observações sequenciais. Mais especificamente, nós abordamos cenários desafiadores, tais como o aprendizado de relações temporais a partir de dados ruidosos, dados contendo valores discrepantes (outliers) e grandes conjuntos de dados. Na interface entre estatísticas, ciência da computação, análise de dados e engenharia encontra-se a comunidade de aprendizagem de máquina, que fornece ferramentas poderosas para encontrar padrões a partir de dados e fazer previsões. Nesse sentido, seguimos métodos baseados em Processos Gaussianos (PGs), uma abordagem probabilística prática para a aprendizagem de máquinas de kernel. A partir de avanços recentes em modelagem geral baseada em PGs, introduzimos novas contribuições para o exercício de modelagem dinâmica. Desse modo, propomos a nova família de modelos de Processos Gaussianos Recorrentes (RGPs, da sigla em inglês) e estendemos seu conceito para lidar com requisitos de robustez a outliers e aprendizagem estocástica escalável. A estrutura hierárquica e latente (não-observada) desses modelos impõe expressões não- analíticas, que são resolvidas com a derivação de novos algoritmos variacionais para realizar inferência determinista aproximada como um problema de otimização. As soluções apresentadas permitem a propagação da incerteza tanto no treinamento quanto no teste, com foco em realizar simulação livre. Nós avaliamos em detalhe os métodos propostos com benchmarks artificiais e reais da área de identificação de sistemas, assim como outras tarefas envolvendo dados dinâmicos. Os resultados obtidos indicam que nossas propostas são competitivas quando comparadas ao estado da arte, mesmo nos cenários que apresentam as complicações supracitadas, e que a modelagem dinâmica baseada em PGs é uma área de pesquisa promissora.

Page generated in 0.4243 seconds