• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 30
  • 23
  • 16
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 198
  • 30
  • 23
  • 20
  • 19
  • 18
  • 18
  • 16
  • 14
  • 14
  • 14
  • 14
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Chitosan beads as a delivery vehicle for the antituberculosis drug pyrazinamide / J.B. Havenga

Havenga, John Botha January 2006 (has links)
Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2007.
82

The effect of pharmaceutical excipients on the release of indomethacin from chitosan beads / Riana Havinga

Havinga, Riana January 2006 (has links)
Contents: Chitosan -- Controlled drug delivery -- Indomethacin -- Inotropic gelation -- Tripolyphosphate (TPP) -- Explotab® -- Ac-Di-Sol® -- Vitamin C / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2007.
83

Examination of a novel proteinaceous extract from winter rye (<i>Secale cereale</i> L. cv Musketeer)

Lim, Ze Long 11 April 2011
A gel is a cross-linked polymer network that spans an entire liquid medium; its properties depend strongly on the interaction of the polymer and the liquid medium. There are various ways to induce gelation in different systems such as altering temperature or pH. In this study, phenol extracted protein fractions from non-acclimated (NA) and cold-acclimated (CA) winter rye (Secale cereale L. cv Musketeer) leaf tissue were subjected to freeze-thaw treatment. Gelation was induced in the NA and CA extracts after repeated freeze-thaw treatments, accompanied by a change in sample rheological properties. Further experimentation revealed that gel formation only occurred at high pH (pH 12.0) and that a minimum of 3 to 4 freeze-thaw cycles were required. The viscosity of the protein gel increased 5.7- to 9.5-fold in the NA and CA extracts respectively upon freeze-thaw. Experiments optimizing the extraction conditions and protein concentration were also performed. The gel was stable and only a specific combination of chaotropic agent, anionic surfactant and reducing agent such as urea, sodium docecyl sulfate (SDS) and â-mercaptoethanol (â-ME) with heating could disrupt the gel network. The gel was composed of several proteins in the extracts as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Based on SDS-PAGE analysis, ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) was identified as the major protein component in the gel. Various experiments were performed to assess the role of Rubisco in gel formation; however, the results were inconclusive. It is suggested that these extracts may contain antifreeze proteins (AFPs) that have been demonstrated to form amyloid gels upon freeze-thaw. Further studies examining the composition and mechanism of gel formation may result in a future role for this material in the food industry.
84

Examination of a novel proteinaceous extract from winter rye (<i>Secale cereale</i> L. cv Musketeer)

Lim, Ze Long 11 April 2011 (has links)
A gel is a cross-linked polymer network that spans an entire liquid medium; its properties depend strongly on the interaction of the polymer and the liquid medium. There are various ways to induce gelation in different systems such as altering temperature or pH. In this study, phenol extracted protein fractions from non-acclimated (NA) and cold-acclimated (CA) winter rye (Secale cereale L. cv Musketeer) leaf tissue were subjected to freeze-thaw treatment. Gelation was induced in the NA and CA extracts after repeated freeze-thaw treatments, accompanied by a change in sample rheological properties. Further experimentation revealed that gel formation only occurred at high pH (pH 12.0) and that a minimum of 3 to 4 freeze-thaw cycles were required. The viscosity of the protein gel increased 5.7- to 9.5-fold in the NA and CA extracts respectively upon freeze-thaw. Experiments optimizing the extraction conditions and protein concentration were also performed. The gel was stable and only a specific combination of chaotropic agent, anionic surfactant and reducing agent such as urea, sodium docecyl sulfate (SDS) and â-mercaptoethanol (â-ME) with heating could disrupt the gel network. The gel was composed of several proteins in the extracts as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Based on SDS-PAGE analysis, ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) was identified as the major protein component in the gel. Various experiments were performed to assess the role of Rubisco in gel formation; however, the results were inconclusive. It is suggested that these extracts may contain antifreeze proteins (AFPs) that have been demonstrated to form amyloid gels upon freeze-thaw. Further studies examining the composition and mechanism of gel formation may result in a future role for this material in the food industry.
85

The Evaluation of the Mechanical Strength of Epoxy-Based Resin as a Plugging Material, and the Development of a Novel Plug and Abandon Technique Using Vitrified Solid Epoxy-Based Resin Beads

Abuelaish, Ahmed 2012 May 1900 (has links)
Over the past several years, some of the platforms in the Gulf of Mexico have been damaged completely, such that conventional P&A operations may not be possible. In these cases, plugging fluid needs to be pumped through an intervention well and dropped several thousand feet in water to settle above a packer and seal the well. The current P&A material of choice is cement, but cement is miscible in water, which dilutes and contaminates the cement. Therefore, alternate plugging materials need to be used for these operations. This paper discusses the development of a cost-effective Epoxy P&A method and the challenges of using Epoxy. First, the impact of seawater, oil, and pipe dope on the curing process remains unknown. Secondly, the yield strength of Epoxy with and without the contaminating chemicals must be equal to or better than cement. Finally, previous tests have shown significant losses of Epoxy to the walls of the wellbore during the 7,000-ft drop. 2 High temperature curing and compression tests were performed on contaminated epoxy samples to determine the effectiveness of the epoxy plug. To reduce material losses, an improved method for introducing the epoxy into the target zone was developed. This method takes advantage of a narrow window in the cure process where the curing process can be suspended by quenching the partially cured liquid epoxy in water at room temperature, thereby changing the liquid epoxy into solid beads. The beads can then be pumped into the wellbore, where they liquefy at wellbore temperature, 200°F, then cure into a solid plug. Seawater was found to accelerate the cure time, while all contaminants tested reduced the fracture strength by more than 25% compared to pure resin. The yield strengths of contaminant mixtures, however, remained relatively constant, with the greatest drop being only 11%. The use of solid epoxy beads was found to have a compressive strength 50% greater than Portland cements I&II. In addition, the application mentioned herein eliminates the need to prepare the plug material on site. These advantages greatly contribute to reducing the costs of an epoxy P&A operation, to potentially being USD 0.7 million cheaper than a Portland cement operation.
86

Molecular Modulation Of Material Properties: Studies On Nanoparticles, Nanoassemblies, And Low Molecular-Mass Gelator

Srivastava, Aasheesh 01 1900 (has links)
The present thesis titled “Molecular Modulation of Material Properties: Stud- ies on Nanoparticles, Nanoassemblies and Low Molecular Mass Gelator” deals with the preparation, characterization, and investigations into the properties of gold nanoparticles coated with novel thiols. The coverage of nanoparticle surfaces with these thiols renders them with special characteristics that will be of interest in biological and sensor applications. Also, a novel low molecular mass tetrameric sugar-based hydrogelator was synthesized and its gelation properties were studied in detail. Chapter 1 gives a general introduction and an overview about Nanomaterials, with emphasis towards nanoparticles of gold, which form the basis of this work. It delves with the history of research in noble metal nanoparticles, their interesting electronic and optical properties, the present methods of synthesis of high quality nanoparticles of noble metals, numerous potential applications of these novel materials, as well as the challenges in their real-life applications, and ends with the future outlook of this field of research. Chapter 2 describes the synthesis and characterization of three cationic lipid-like disulfides whose molecular structures are shown in Fig. 2.1. Gold nanoparticles capped with these molecules were then synthesized in small size dispersion by a simple one-phase protocol. These particles exhibited remarkably different solubility properties that were dictated by the molecular structure of the capping agent. The nanoparticles were characterized by a variety of techniques like UV-visible spec- troscopy, Transmission Electron Microscopy (TEM), proton Nuclear Magnetic Resonance (1H NMR), Fourier Transform Infra-red (FTIR) spectroscopy, and Zeta Potential measurements. These nanoparticles were then examined for their interactions (structural formula) Figure 1: Chemical Structures of the cationic lipid-like thiols used for nanoparticle preparation with dipalmitoyl phosphatidyl choline (DPPC) vesicles as model biological membranes. TEM, UV-vis, and Differential Scanning Calorimetry (DSC) were employed to probe the interactions. It was found that the capping agent of the nanoparticle had a strong bearing upon the interactions of the nanoparticles with DPPC vesicles. Chapter 3 describes the assembly of hydrophilic cationic nanoparticles upon elec- trostatic interaction with a variety of anionic surfactants. The chemical structures of some of the anions employed in the study, as well as a schematic of cationic nanopar- ticle are shown in Fig. 2. Upon ion pairing with long-chain anionic surfactants, the hydrophilic cationic nanoparticles were completely hydrophobized. They could then be phase-transferred to organic layer. TEM showed that nanoparticles assemble in to a variety of mesostructures upon ion-pairing with anions. The aggregate formation was found to depend critically upon length of the hydrophobic alkyl chain as well as the head-group of the anion. Isothermal Titration Calorimetry (ITC) was employed to probe the interactions of these nanoparticles with anions. It was found that the anions that resulted in nanoparticle precipitation displayed exothermic interactions with the nanoparticle. Chapter 4 deals with the synthesis of -thiolated metal chelator derivatives whose structures are shown in Fig. 3. The molecules are based on well-known chelators viz. iminodiacetic acid and bis-(2-pyridylmethyl)amine. While the first one is carboxylic acid-based chelator, the second one is pyridine-based. Nanoparticles coated with these chelators were synthesized in a size-controlled manner. These nanoparticles exhibited pH-controlled reversible assembly. However, while S-IDA based nanoparticles aggregated at low pH values, the S-BPA based nanoparticles aggregated in high pH regimes. Mixed monolayer protected gold nanoparticles were synthesized by employing S-BPA and C12H25SH as capping agents. It resulted in the formation of nanoparticles in low size-dispersion. These nanoparticles were characterized by 1H NMR spectroscopy to infer the ratio of the two capping agents on the nanoparticle surface. These nanoparticles demonstrated metal-ion induced aggregation. It was found that the nanoparticles could differentiate Cu2+ ions from other ions, and immediately formed aggregates in presence of Cu2+ ions. Chapter 5 describes the synthesis of novel mono-thiolated “Gemini” surfactants for nanoparticle synthesis. Gemini surfactants with different spacers were prepared. These surfactants had a 12-n-12 kind of molecular structure as shown in the Fig. 4. Upon preparation of nanoparticles with these thiols, the resulting material was soluble in water in the case of rigid thiols like D2S and DBPS Chapter 6 deals with the synthesis and hydrogelation properties of a low molecular mass hydrogelator based on an azobenzene based tetrameric sugar derivative (Fig. 5). The pKa of carboxylic acids in the molecule were determined using 13C NMR. The trans-to-cis isomerization of the compound was probed by time-dependent UV-vis studies. The sugar derivative exhibited pronounced hydrogelation capacity, gelling water at micromolar concentration. The gel formed was characterized extensively (structural formula) Figure 2: Schematic of cationic nanoparticles and molecular structures of the anions employed for nanoparticle assembly (structural formula) Figure 3: Chemical structures of metal-chelator containing thiols employed for the pH-controlled and metal-ion mediated nanoparticle assembly (structural formula) Figure 4: Schematic of cationic nanoparticles and molecular structures of the anions employed for nanoparticle assembly (structural formula) Figure 5: Chemical Structure of azobenzene-based tetrameric sugar derivative exhibit- ing pronounced hydrogelation using melting temperature analysis, UV-vis, FT-IR, circular dichroism spectroscopy and scanning electron microscopy. The resultant gel exhibited impressive tolerance to the pH variation of the aqueous phase and gelated water in the pH range of 4 to 10. While UV-vis and CD spectroscopy indicated that pronounced aggregation of the azobenzene chromophores in the gelator was responsible for gelation, FT-IR studies showed that hydrogen bonding is also a contributing factor in the gelation process. The melting of gel was found to depend upon the pH of the aqueous medium in which gel was formed. The gel showed considerable photostability to UV irradiation indicating tight intermolecular packing inside gelated state that render azobenzene groups in the resultant aggregate refractory to photoisomerization. The electron micrographs of the aqueous gels thus formed showed the existence of spongy globular aggregates in such gelated materials. Addition of salts to the aqueous medium led to a delay in the gelation process and also caused remarkable morphological changes in the microstructure of the gel. Appendix A describes the employment of ligand-free palladium nanoparticles towards efficient catalysis of Heck and Suzuki reactions in aqueous medium. Hexadecyl trimethylammonium bromide was employed as the surfactant to achieve solubilization of organic compounds in aqueous medium. UV-vis and TEM investigations into the formation of nanoparticles in the reaction media were undertaken. These studies indicate that the nanoparticles were formed by reduction of potassium tetrachloropalladinate by methyl acrylate used as one of the reactants. TEM investigation indicated the formation of nanoparticle assemblies upon solvent drying. Efficient and catalytic synthesis of a number of organic compounds could be achieved in high yield.
87

The effect of pharmaceutical excipients on the release of indomethacin from chitosan beads / Riana Havinga

Havinga, Riana January 2006 (has links)
Chitosan has proven through the years as a versatile biomaterial to be used in pharmaceutical applications. Its mucoadhesive properties as well as its ability to manipulate the tight junctions in epithelium membranes have qualified it as an effective drug carrier in controlled drug delivery systems. Microparticles or beads as they are forward called in this study have advantages over conventional drug dosage forms because of a large surface to volume ratio and have the ability to target a specific site for drug release. Indomethacin is an anti-inflammatory drug that causes gastrointestinal side effects in conventional immediate-release dosage forms. The goal is to manipulate the drug delivery vehicle to target the intestines/colon as the site for drug delivery and to minimize this side effect. Thus chitosan beads have been chosen as a drug delivery system for indomethacin in this study. Chitosan beads have been prepared through the ionotropic gelation method using tripolyphophate (TPP) as a cross-linking agent. To prepare the most effective bead to encapsulate indomethacin different formulation and system variables (pH of the TPP solution, the concentration of the TPP solution as well as the indomethacin concentration) have been evaluated according to the following parameters: morphology, drug loading capacity and swelling capability. The ideal pH of the TPP solution was determined at 8.7 and the most effective TPP and indomethacin concentration were 5% w/v and 4% w/v respectively. The chitosan concentration was kept at 3% w/v throughout the study. These concentrations were used to examine the effect of pharmaceutical excipients on the indomethacin release from chitosan beads. The effect of the different excipients namely, ExplotabⒽ(0.25% w/v), Ac-Di-SolⓀ (0.5% w/v) and Vitamin C (0.25% w/v), on the morphology, drug loading capacity, swelling capability as well as the drug release of indomethacin chitosan beads (ICB's) were also studied. The excipients were used in the individually above mentioned concentrations and in combination with each other in the same concentrations. These formulations were used in dissolution studies over a period of 6 hours in PBS pH 7.4 solutions. The indomethacin release rate increased when an excipient was added to the formulation and it dramatically increased when the excipients were added in their various combinations, compared to the formulation that did not contain excipients. / Contents: Chitosan -- Controlled drug delivery -- Indomethacin -- Inotropic gelation -- Tripolyphosphate (TPP) -- Explotab® -- Ac-Di-Sol® -- Vitamin C / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2007.
88

The effect of pharmaceutical excipients on rifampicin release from chitosan beads / Mangaabane Gorden Mohlala

Mohlala, Mangaabane Gorden January 2004 (has links)
Controlled release systems aim at achieving a predictable and reproducible drug release over a desired time period. These systems allow reduced dosing frequency, constant drug levels in the blood, increased patient compliance and decreased adverse effects. In a recent study, Chitosan beads, containing N-trimethyl Chitosan chloride, have shown a potential in the delivery of rifampicin. However, because of inadequate amounts of rifampicin released over 24 hours, incorporation of other pharmaceutical excipients to increase the swelling behaviour of the beads to improve drug release, was considered in this study. Chitosan beads were prepared through ionotropic gelation with tripolyphosphate (TPP) as a crosslinking agent. To increase the porosity if the Chitosan beads Explotab®, Ac-Di-Sol® and vitamin C were added individually to Chitosan solutions at concentrations of 0.1, 0.25 and 0.5 % w/v before adding the mixture to the TPP solution. Swelling and morphology studies were used in the evaluation of the different formulations. The swelling and morphology results were then used to select a set of combination and concentrations of two excipients sand then prepare and characterise beads containing two combinations. The combination formulations and formulations containing single excipients were then loaded with rifampicin. Pure chitosan beads exhibited a higher drug loading capacity (67.49 %) compared to the lowest loading capacity of 41.61 % exhibited by chitosan beads containing a combination of Explotab®, Ac-Di-Sol®.For all the other formulations the drug loading capacity ranged within 48 and 63 %. These formulations were used for dissolution studies over a period of 6 hours at pH 5.60 and 7.40. The dissolution results showed that no chitosan has dissolved at both pH values. A significant amount of rifampicin was, however, released from the beads, especially at pH 7.40. chitosan beads containing vitamin C also exhibited high rifampicin release (48.34 ± 1.00) %) at pH 5.60 compared to the other formulations and this makes vitamin C a potential excipient for enhanced drug release over a wide pH range (both acidic and alkalinic). However, further studies are necessary to optimise the preparation method to minimise drug loss during loading and to improve the drug loading capacity of the beads. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2005.
89

Influence of modified release excipients on ketoprofen release from chitosan particles / W.J. Verwey

Verwey, Werner Jaun January 2005 (has links)
Controlled release formulations offer many advantages over conventional dosage forms. These include reduced plasma fluctuations and improved patient comp1i:nce. Complex controlled release formulations such as those with enteric release properties, often require additional steps in the production phase. The costs and economic impact associated with these complex controlled release dosage formulations often outweigh the immediate benefits. Thus the development of an economic method to produce controlled release particles is of great importance especially in third world countries. In controlled release formulations, the drug is generally dispersed throughout a polymer matrix. The rate of drug release is often determined by the viscosity or complexity of the polymer matrix through which the drug needs to diffuse in order to be released. With enteric release the polymer coating, insoluble in an acidic environment is often applied in the final phase of production. Chitosan is a versatile polymer of natural origin with many favourable characteristics. These include its safety, biocompatibility, and biodegradability. Simple methods can be applied and modified to produce controlled release particles form chitosan. The effect of modern controlled release polymers such as Aqoat AS-HF, Eudragit SlOO and Kollidon SR was investigated. Chitosan beads and chitosan-polymer beads, as well as chitosan granules and chitosan-polymer granules, were prepared and investigated as possible controlled release formulations. Ketoprofen was chosen as the model drug. Chitosan beads and chitosan-polymer beads were prepared by inotropic gelation in tripolyphosphate. Chitosan granules and chitosan-polymer matrix granules were prepared by binding chitosan with an acetic acid solution as a granulating system. The beads and granules appeared differed in appearance as well as in the results obtained from various experiments. Granules prepared in the study did not appear to be effective with regards to enteric and controlled release. Beads prepared form Kollidon SR appeared to be effective with regards to enteric and controlled release, with Kollidon 1% and 5% w/v chitosan beads achieving good drug loading of up to 73.13% and releasing less than 15 % of the total drug content in 0.1 M HCI after 60 minutes. Drug release continued steadily for up to 360 minutes in pH 7.2. It was concluded that Kollidon SR loaded chitosan beads nay be a viable controlled release dosage form with enteric release properties, and that future experiments, possibly with lower polymer concentrations, are worthwhile / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2006.
90

Colloidal Behaviour of Casein Micelles with Concentration

Krishnankutty Nair, Pulari 14 September 2012 (has links)
Structure function changes of casein micelles were studied as a function of concentration using a non invasive concentration method, osmotic stressing. A combination of serum analysis, light scattering and rheological measurements were used to characterize the physico-chemical properties of casein micelles. In heated and unheated milk, rheological studies indicated that casein micelles behave as hard spheres of similar volume fractions, if the viscosity changes in the serum phase and the particle particle interactions are taken into account. The differences in the distribution of the heat induced complexes between colloidal and soluble phase affected the colloidal properties of casein micelles. Above 70 g L-1 protein, the protein particles were no longer free diffusing. Re-dilution of the suspensions showed no irreversible aggregation. The data suggested that in the range of concentration studied casein micelles behave as hard spheres. Age gelation was also investigated on heated and unheated concentrated milk. In unheated concentrated milk proteolysis played an important role in imparting an increase in viscosity by causing aggregation of the casein micelles. On the other hand, in heated milk, there was a significant effect of the whey protein aggregates, which increased their interaction with the casein micelles over time. This effect, together with proteolysis caused age gelation in heated concentrated milk. The method of concentration used in this research, osmotic stressing, was then compared to ultrafiltration. It was demostrated that these two methods are not equivalent, as shear and mixing during ultrafiltration cause rearrangements to the casein micells. The differences were clearly demonstrated by adding soluble caseins to the milk before or after concentration. This project brings a better understanding on the effects of concentration on the structure-function of casein micelles and the interactions occurring in milk proteins during concentration.

Page generated in 0.8853 seconds