• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of preparative methods for chitosan microparticles

Benamer, Wadiaa January 2013 (has links)
In recent years, the application of microparticles in different fields including cosmetics, agriculture, pharmaceutics and biomedicine has been widely investigated.In this project, we aimed to improve the preparative methods for chitosan–triphosphate microparticles (Cs/TPP) for perspective application in the fields of cell encapsulation and controlled drug delivery. Prior to the preparation of chitosan-based microparticles, in order to confirm good biocompatibility and reproducibility, protocols have been established for the purification and characterisation of chitosan including the assessment of average molecular weight, protein content and degree of deacetylation.This study then primarily focused on the use of β-glycerophosphate (βGP) as an excipient, which is known to solubilize chitosan at neutral pH, thus allowing the preparation of chitosan microparticles (microspheres and toroidal) via ionotropic gelation under physiological conditions. The preparation of Cs-βGP/TPP microparticles was optimized varying several key process variables (concentration, flow rate, and frequency) and these microparticles were produced with a narrow size distribution (400 – 500 μm, spherical shape) and compared to Cs/TPP controls. The main result was the possibility to perform this process at neutral pH, although we have also demonstrated an improved toughness and cross-linking density of these microspheres as a result of the presence of β-glycerophosphate. Further, we have investigated the application of this method to a toroidal geometry, which provides advantages in terms of better transfer of oxygen and nutrients to any encapsulated materials. Cs/TPP and Cs-βGP/TPP ‘micro-doughnuts’ were also prepared and characterised. This research highlighted the evidence of a higher cross-linking density of these microparticles in comparsion with the spherical ones. In order to optimise the physicochemical characteristics of these microparticles for future applications as biomaterials, the surface of Cs/TPP and Cs-βGP/TPP microparticles was modified through an additional polyelectrolyte complexation with poly (sodium 4- styrene sulphonate) (PSS). The improved toughness and cross-linking density was confirmed by measuring the mechanical properties and solid content which indicated the successful complexation of PSS onto the surface of these microparticles.
2

The effect of pharmaceutical excipients on isoniazid release from chitosan beads / Deon van Rensburg

Van Rensburg, Andries Gideon January 2007 (has links)
In controlled release applications a drug is molecularly dispersed in a polymer phase. In the presence of a thermodynamically compatible solvent, swelling occurs and the polymer releases its content to the surrounding medium. The rate of the drug release can be controlled by interfering with the swelling rate of the beads or by influencing diffusion through the viscosity of the polymer. Beads that contain chitosan were prepared through the ionotropic gelation method where tripolyphosphate (TPP) was used as the crosslinking agent. Beads that consisted of 3% w/v isoniazid (lNH) and 5% w/v chitosan were prepared in a 5% w/v TPP solution (pH 8.7) as the primary beads. To improve the drug loading of chitosan isoniazid beads (ClB) the TPP concentration, pH of the TPP solution and the INH concentrations were altered for maximum drug loading. To increase the porosity of the beads of chitosan beads Explotab® (EXPL), Ac-Di-Sol® (ADS) and Vitamin C (VC) were added individually to chitosan solutions at concentrations of 0.1, 0.25 and 0.5% w/v before adding the mixture to the TPP solution. Morphology, swelling and drug loading studies were used to evaluate the different formulations. After these excipients were added individually they were also added in combinations of two excipients respectively and characterised. From the results of the drug loading studies the beads that contained only chitosan and isoniazid showed a percentage drug loading of (43.92%) which is the best of all the beads that were analyzed. The multi excipient combination of Ac-Di-Sol® and Explotab® showed the best swelling capability at both pH levels. Dissolution studies were conducted on all the formu lations over a period of 6 hours (360 minutes) at pH 5.6 and pH 7.4. From the dissolution results it were clear that no chitosan dissolved at both pH values. The dissolution of single pharmaceutical excipient (SPE) and multi pharmaceutical excipient (MPE) formulations can be arranged in the following order: VC/ADS < VC < ADS/EXPL < ADS < VC/EXPL < CIB < EXPL. Explotab® is a potential excipient for enhanced drug release over a wide pH range. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2007.
3

Chitosan beads as a delivery vehicle for the antituberculosis drug pyrazinamide / John Botha Havenga

Havenga, John Botha January 2006 (has links)
Controlled release systems aim at achieving a predictable and reproducible drug release profile over a desired time period. These controlled release formulations offer many advantages over conventional dosage forms. These advantages include: reduced dosing intervals, constant drug levels in the blood, increased patient compliance and decreased adverse effects. Complex controlled release formulations such as those with sustained release properties, often require additional steps during the production phase. The cost and economic impact associated with these complex controlled release dosage formulations often outweigh the short term benefits. Thus the development of an economic method to produce controlled release particles is of great importance especially in third world countries. In controlled release formulations the drug is often equally dispersed throughout a polymer matrix. In the presence of a thermodynamically compatible solvent, swelling occurs and the polymer releases its content to the surrounding medium. The rate of drug release can be controlled by interfering with the amount of swelling and rate of diffusion by manipulating the viscosity of the polymer matrix. Chitosan is an ideal candidate for controlled drug delivery through matrix release systems. It is a biodegradable polymer with absorption-enhancing properties. Cross-linking chitosan with different cross-linking agents allow the preparation of beads. Beads are frequently used in controlled release dosage forms as they are very flexible in dosage form development and show various advantages over single unit dosage forms. Because beads disperse freely in the gastrointestinal tract they maximize drug absorption, reduce fluctuation in peak plasma, and minimize potential side effects without lowering drug bio-availability. Chitosan beads and excipient containing chitosan beads were prepared and investigated as possible controlled release formulations. Pyrazinamide was chosen as the model drug. Chitosan beads and excipient containing chitosan beads were prepared by ionotropic gelation in tripolyphosphate. In this study chitosan/pyrazinamide beads containing pharmaceutical excipients (Ascorbic acid, Explotab and Ac-Di-Sol) were produced. The excipients were added individually and in combinations to the chitosadpyrazinamide dispersion and the beads were characterized on the basis of their morphology, solubility, fiability, drug loading capacity and swelling behaviour, as well as drug release (dissolution properties). The drug loading of the pyrazinarnide loaded chitosan beads, was 52.26 % 0.57%. It was noted that the inclusion of excipients in the beads resulted in an increase in drug loading with the combination of Ascorbic acid and Ac-Di-Sol giving the highest drug loading of 67.09 ± 0.22%. It was expected that the addition of the pharmaceutical excipients would lead to a sustained release of pyrazinamide. Dissolutions studies, however, revealed a burst release in both phosphate buffer solution (PBS) pH 5.60 and 7.40 over the first 15 minutes and the curve reached a plateau after 30 minutes. Thus, apparently the inclusion of the pharmaceutical excipients did not contribute to a sustained release of pyrazinamide over the tested period of six hours. In future studies the dissolution time can possibly be extended to a period of 24 hours. It might be possible for the remaining drug (approximately 40%) in the beads to be released over the extended period. Other polymers can also be investigated to control the release of pyrazinamide. Further studies are, however, necessary to investigate this possibility in the future. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2007.
4

Chitosan beads as a delivery vehicle for the antituberculosis drug pyrazinamide / J.B. Havenga

Havenga, John Botha January 2006 (has links)
Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2007.
5

The effect of pharmaceutical excipients on isoniazid release from chitosan beads / Deon van Rensburg

Van Rensburg, Andries Gideon January 2007 (has links)
In controlled release applications a drug is molecularly dispersed in a polymer phase. In the presence of a thermodynamically compatible solvent, swelling occurs and the polymer releases its content to the surrounding medium. The rate of the drug release can be controlled by interfering with the swelling rate of the beads or by influencing diffusion through the viscosity of the polymer. Beads that contain chitosan were prepared through the ionotropic gelation method where tripolyphosphate (TPP) was used as the crosslinking agent. Beads that consisted of 3% w/v isoniazid (lNH) and 5% w/v chitosan were prepared in a 5% w/v TPP solution (pH 8.7) as the primary beads. To improve the drug loading of chitosan isoniazid beads (ClB) the TPP concentration, pH of the TPP solution and the INH concentrations were altered for maximum drug loading. To increase the porosity of the beads of chitosan beads Explotab® (EXPL), Ac-Di-Sol® (ADS) and Vitamin C (VC) were added individually to chitosan solutions at concentrations of 0.1, 0.25 and 0.5% w/v before adding the mixture to the TPP solution. Morphology, swelling and drug loading studies were used to evaluate the different formulations. After these excipients were added individually they were also added in combinations of two excipients respectively and characterised. From the results of the drug loading studies the beads that contained only chitosan and isoniazid showed a percentage drug loading of (43.92%) which is the best of all the beads that were analyzed. The multi excipient combination of Ac-Di-Sol® and Explotab® showed the best swelling capability at both pH levels. Dissolution studies were conducted on all the formu lations over a period of 6 hours (360 minutes) at pH 5.6 and pH 7.4. From the dissolution results it were clear that no chitosan dissolved at both pH values. The dissolution of single pharmaceutical excipient (SPE) and multi pharmaceutical excipient (MPE) formulations can be arranged in the following order: VC/ADS < VC < ADS/EXPL < ADS < VC/EXPL < CIB < EXPL. Explotab® is a potential excipient for enhanced drug release over a wide pH range. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2007.
6

Chitosan beads as a delivery vehicle for the antituberculosis drug pyrazinamide / John Botha Havenga

Havenga, John Botha January 2006 (has links)
Controlled release systems aim at achieving a predictable and reproducible drug release profile over a desired time period. These controlled release formulations offer many advantages over conventional dosage forms. These advantages include: reduced dosing intervals, constant drug levels in the blood, increased patient compliance and decreased adverse effects. Complex controlled release formulations such as those with sustained release properties, often require additional steps during the production phase. The cost and economic impact associated with these complex controlled release dosage formulations often outweigh the short term benefits. Thus the development of an economic method to produce controlled release particles is of great importance especially in third world countries. In controlled release formulations the drug is often equally dispersed throughout a polymer matrix. In the presence of a thermodynamically compatible solvent, swelling occurs and the polymer releases its content to the surrounding medium. The rate of drug release can be controlled by interfering with the amount of swelling and rate of diffusion by manipulating the viscosity of the polymer matrix. Chitosan is an ideal candidate for controlled drug delivery through matrix release systems. It is a biodegradable polymer with absorption-enhancing properties. Cross-linking chitosan with different cross-linking agents allow the preparation of beads. Beads are frequently used in controlled release dosage forms as they are very flexible in dosage form development and show various advantages over single unit dosage forms. Because beads disperse freely in the gastrointestinal tract they maximize drug absorption, reduce fluctuation in peak plasma, and minimize potential side effects without lowering drug bio-availability. Chitosan beads and excipient containing chitosan beads were prepared and investigated as possible controlled release formulations. Pyrazinamide was chosen as the model drug. Chitosan beads and excipient containing chitosan beads were prepared by ionotropic gelation in tripolyphosphate. In this study chitosan/pyrazinamide beads containing pharmaceutical excipients (Ascorbic acid, Explotab and Ac-Di-Sol) were produced. The excipients were added individually and in combinations to the chitosadpyrazinamide dispersion and the beads were characterized on the basis of their morphology, solubility, fiability, drug loading capacity and swelling behaviour, as well as drug release (dissolution properties). The drug loading of the pyrazinarnide loaded chitosan beads, was 52.26 % 0.57%. It was noted that the inclusion of excipients in the beads resulted in an increase in drug loading with the combination of Ascorbic acid and Ac-Di-Sol giving the highest drug loading of 67.09 ± 0.22%. It was expected that the addition of the pharmaceutical excipients would lead to a sustained release of pyrazinamide. Dissolutions studies, however, revealed a burst release in both phosphate buffer solution (PBS) pH 5.60 and 7.40 over the first 15 minutes and the curve reached a plateau after 30 minutes. Thus, apparently the inclusion of the pharmaceutical excipients did not contribute to a sustained release of pyrazinamide over the tested period of six hours. In future studies the dissolution time can possibly be extended to a period of 24 hours. It might be possible for the remaining drug (approximately 40%) in the beads to be released over the extended period. Other polymers can also be investigated to control the release of pyrazinamide. Further studies are, however, necessary to investigate this possibility in the future. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2007.
7

Nanopartículas de quitosana como veículo para entrega de oligodeoxiribonucleotídeos antisense / Chitosan nanoparticles as delivery vehicle for antisense oligodeoxyribonucleotides

Melo, Cristiane Casonato 30 May 2018 (has links)
Em 1978, o trabalho realizado por Stephenson e Zamecnik demonstrou a capacidade de um oligonucleotídeo de impedir a expressão de uma proteína específica. Atualmente, duas tecnologias são mais utilizadas para este propósito: os oligodeoxiribonucleotídeos antisense e o RNA de interferência (siRNA), que se aproveitam da capacidade de anelação entre as fitas complementares. A maior diferença entre as duas técnicas é a maquinaria proteica recrutada, isso é, o complexo RISC atua no funcionamento do siRNA, e a protease RNase H atua na clivagem da fita de RNA quando hibridizada com DNA. Apesar da grande aplicabilidade destas tecnologias, tanto para doenças metabólicas quanto para canceres, o veículo de entrega e proteção dessas sequências é de fundamental importância, visto que a aplicação desses oligonucleotídeos livres está sujeita à rápida degradação e ineficiência. A modificação das bases é uma das estratégias para conferir maior estabilidade às sequências, porém estas tem sido relacionadas a um aumento da toxicidade. Nessa dissertação, a quitosana, um polissacarídeo catiônico é utilizado para síntese de nanopartículas e encapsulamento dos oligodeoxiribonucleotídeos antisense (ASO). Para isso, foram realizadas modificações na quitosana comercial como despolimerização, trimetilação ou conjugação com PEG, seguida da síntese das nanopartículas com a adição de tripolifosfato de sódio (TPP) pelo método de gelatinização ionotrópica. A estabilidade das nanopartículas foi medida em função do tempo, da variação de temperatura e da diferença de pH. Além disso, a toxicidade dessas nanopartículas foi analisada através da viabilidade celular em diferentes linhagens, NB-4, HepaRG, HTC e BHK-570. A expressão da proteína verde fluorescente (GFP) na célula NB-4 foi utilizada para avaliar a entrega do ASO desenhado, sendo sua fluorescência monitorada por microscopia confocal. Os resultados demonstram que as nanopartículas se mantiveram estáveis durante o período de tempo analisado, assim como com a temperatura variando de 22 a 45&deg;C e em pH ácido. Cada linhagem celular respondeu de forma diferente ao tratamento com as nanopartículas sem ASO, sendo a linhagem saudável BHK-570 com a maior resistência. Ademais, todas as células apresentaram viabilidade reduzida quando tratadas com concentrações na ordem de 1011 nanopartículas/mL a base de quitosana trimetilada. A fluorescência das células NB-4 quando tratada com as nanopartículas com ASO diminuiu consideravelmente nas 18 primeiras horas, seguida de um aumento após 42 horas. Dessa forma, pode-se concluir que as nanopartículas de quitosana propostas nessa dissertação apresentaram uma excelente alternativa para a entrega de material genético, principalmente para o trato gastro-intestinal, devido à sua estabilidade em pH ácido. / The property of an oligonucleotide to interfere in the expression of a protein was observed in 1978 by Stephenson and Zamecnik. To perform such interference, there are today, two main techniques being explored: antisense oligodeoxyribonucleotides and interference RNA. In both cases, the particularity of their chemical structure is taken into account as soon as they can bind in a complementary manner to the messenger RNA and inhibit its translation. The great difference between these techniques is related to the proteases involved in the process, while for interference RNA the RISC machinery acts, for antisense oligodeoxyribonucleotides RNase H cleaves the RNA in the duplex DNA-RNA. Although these tools to edit the translation process are relevant to the treatment and even cure of metabolic disorders and cancers, it is still not effective when employed without a coating to protect the sequences before it reaches the destiny in vivo. Efforts have been made in developing modified bases to be more stable, but they show some toxicity. In this dissertation, chitosan, a natural cationic polyssacharide, is used to produce nanoparticles to protect the antisense oligodeoxyribonucleotide (ASO). For this reason, the commercial chitosan was modified, depolymerized, trimetilated or PEGlated and the nanoparticles were synthesized with sodium tripolyphosphate (TPP) by ionotropic gelation method. The stability along time, in different pHs and temperatures was assessed. The toxicity of nanoparticles without ASO was quantified by MTT tests in NB-4, HepaRG, HTC and BHK-570 cell lines. A green fluorescent protein (GFP) expressed by NB-4 cells was the target to evaluate the delivery efficiency of the ASO, and its fluorescence was measured by confocal microscopy. Results showed that nanoparticles were stable over time as well as in temperatures ranging from 22 to 45&deg;C and in acidic pH. Each cell line responded in a different manner to the treatment, with the health cell BHK-570 showing higher resistance. Furthermore, all of them presented lower viability when treated with trimetilated chitosan nanoparticles in the highest concentrations (ca 1011 nanoparticles/mL). NB-4 cells presented a decrease in fluorescence in 18 hours of treatment followed by an increase after 42 hours. We conclude that chitosan nanoparticles are a good alternative to the delivery of genetic material even more in the gastro intestinal tract due to its great stability in acid pH values.
8

Nanopartículas de quitosana como veículo para entrega de oligodeoxiribonucleotídeos antisense / Chitosan nanoparticles as delivery vehicle for antisense oligodeoxyribonucleotides

Cristiane Casonato Melo 30 May 2018 (has links)
Em 1978, o trabalho realizado por Stephenson e Zamecnik demonstrou a capacidade de um oligonucleotídeo de impedir a expressão de uma proteína específica. Atualmente, duas tecnologias são mais utilizadas para este propósito: os oligodeoxiribonucleotídeos antisense e o RNA de interferência (siRNA), que se aproveitam da capacidade de anelação entre as fitas complementares. A maior diferença entre as duas técnicas é a maquinaria proteica recrutada, isso é, o complexo RISC atua no funcionamento do siRNA, e a protease RNase H atua na clivagem da fita de RNA quando hibridizada com DNA. Apesar da grande aplicabilidade destas tecnologias, tanto para doenças metabólicas quanto para canceres, o veículo de entrega e proteção dessas sequências é de fundamental importância, visto que a aplicação desses oligonucleotídeos livres está sujeita à rápida degradação e ineficiência. A modificação das bases é uma das estratégias para conferir maior estabilidade às sequências, porém estas tem sido relacionadas a um aumento da toxicidade. Nessa dissertação, a quitosana, um polissacarídeo catiônico é utilizado para síntese de nanopartículas e encapsulamento dos oligodeoxiribonucleotídeos antisense (ASO). Para isso, foram realizadas modificações na quitosana comercial como despolimerização, trimetilação ou conjugação com PEG, seguida da síntese das nanopartículas com a adição de tripolifosfato de sódio (TPP) pelo método de gelatinização ionotrópica. A estabilidade das nanopartículas foi medida em função do tempo, da variação de temperatura e da diferença de pH. Além disso, a toxicidade dessas nanopartículas foi analisada através da viabilidade celular em diferentes linhagens, NB-4, HepaRG, HTC e BHK-570. A expressão da proteína verde fluorescente (GFP) na célula NB-4 foi utilizada para avaliar a entrega do ASO desenhado, sendo sua fluorescência monitorada por microscopia confocal. Os resultados demonstram que as nanopartículas se mantiveram estáveis durante o período de tempo analisado, assim como com a temperatura variando de 22 a 45&deg;C e em pH ácido. Cada linhagem celular respondeu de forma diferente ao tratamento com as nanopartículas sem ASO, sendo a linhagem saudável BHK-570 com a maior resistência. Ademais, todas as células apresentaram viabilidade reduzida quando tratadas com concentrações na ordem de 1011 nanopartículas/mL a base de quitosana trimetilada. A fluorescência das células NB-4 quando tratada com as nanopartículas com ASO diminuiu consideravelmente nas 18 primeiras horas, seguida de um aumento após 42 horas. Dessa forma, pode-se concluir que as nanopartículas de quitosana propostas nessa dissertação apresentaram uma excelente alternativa para a entrega de material genético, principalmente para o trato gastro-intestinal, devido à sua estabilidade em pH ácido. / The property of an oligonucleotide to interfere in the expression of a protein was observed in 1978 by Stephenson and Zamecnik. To perform such interference, there are today, two main techniques being explored: antisense oligodeoxyribonucleotides and interference RNA. In both cases, the particularity of their chemical structure is taken into account as soon as they can bind in a complementary manner to the messenger RNA and inhibit its translation. The great difference between these techniques is related to the proteases involved in the process, while for interference RNA the RISC machinery acts, for antisense oligodeoxyribonucleotides RNase H cleaves the RNA in the duplex DNA-RNA. Although these tools to edit the translation process are relevant to the treatment and even cure of metabolic disorders and cancers, it is still not effective when employed without a coating to protect the sequences before it reaches the destiny in vivo. Efforts have been made in developing modified bases to be more stable, but they show some toxicity. In this dissertation, chitosan, a natural cationic polyssacharide, is used to produce nanoparticles to protect the antisense oligodeoxyribonucleotide (ASO). For this reason, the commercial chitosan was modified, depolymerized, trimetilated or PEGlated and the nanoparticles were synthesized with sodium tripolyphosphate (TPP) by ionotropic gelation method. The stability along time, in different pHs and temperatures was assessed. The toxicity of nanoparticles without ASO was quantified by MTT tests in NB-4, HepaRG, HTC and BHK-570 cell lines. A green fluorescent protein (GFP) expressed by NB-4 cells was the target to evaluate the delivery efficiency of the ASO, and its fluorescence was measured by confocal microscopy. Results showed that nanoparticles were stable over time as well as in temperatures ranging from 22 to 45&deg;C and in acidic pH. Each cell line responded in a different manner to the treatment, with the health cell BHK-570 showing higher resistance. Furthermore, all of them presented lower viability when treated with trimetilated chitosan nanoparticles in the highest concentrations (ca 1011 nanoparticles/mL). NB-4 cells presented a decrease in fluorescence in 18 hours of treatment followed by an increase after 42 hours. We conclude that chitosan nanoparticles are a good alternative to the delivery of genetic material even more in the gastro intestinal tract due to its great stability in acid pH values.
9

Development and Evaluation of a Biopolymer based Ceftriaxone Sodium Oral Formulation

Patel, Nachiket January 2014 (has links)
No description available.
10

Hydroxylapatit-Verbundwerkstoffe und -Biokeramiken mit parallel orientierten Porenkanälen für das Tissue Engineering von Knochen / Hydroxyapatite composites and bioceramics with parallel aligned pore channels for tissue enginering of bone

Despang, Florian 01 July 2013 (has links) (PDF)
Für das Tissue Engineering von Knochen werden poröse dreidimensionale Substrate (Scaffolds) als Zellträger benötigt, die in der vorliegenden Arbeit über keramische Technologie hergestellt wurden. Neben dem strukturierten und getrockneten Verbundwerkstoff (Grünkörper) und der Sinterkeramik wurde auch der Zwischenzustand nach Ausheizen der organischen Phase (Braunkörper) evaluiert. Bei der Herstellung blieb die Architektur der parallel orientierten Kanalporen, die über den Sol-Gel-Prozess der gerichteten ionotropen Gelbildung des Alginates erzeugt wurde, in allen Materialzuständen erhalten. Die Herstellungstechnologie wurde derart optimiert, dass die neuartigen anisotropen Scaffolds allen prinzipiell gestellten Forderungen für das Tissue Engineering entsprachen – sie waren porös mit weithin einstellbarer Porengröße, sterilisierbar, gut handhabbar unter Zellkulturbedingungen, biokompatibel und degradabel. Der unerwartete Favorit der Biomaterialentwicklung, der Braunkörper – eine nanokristalline, poröse Hydroxylapatit-Biokeramik – lag in einer ersten in vivo-Studie nach 4 Wochen integriert im Knochen vor. Die beobachtete Knochenneubildung deutete auf eine osteokonduktive Wirkung des Materials hin. Die in der vorliegenden Arbeit untersuchten Technologien und Biomaterialien bieten eine Basis für weitere Forschung und motivieren zur Weiterentwicklung und Nutzung als Scaffold für das Tissue Engineering oder Knochenersatzmaterial unter Verwendung der interessanten Architektur.

Page generated in 0.5659 seconds