• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 19
  • 12
  • 8
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 190
  • 190
  • 69
  • 25
  • 25
  • 23
  • 21
  • 20
  • 20
  • 18
  • 18
  • 18
  • 18
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Molecular Insights into Kcnq1ot1 Noncoding Antisense RNA Mediated Long Range Transcriptional Gene Silencing

Pandey, Radha Raman January 2008 (has links)
Non-coding antisense RNAs have been implicated in the epigenetic silencing of individual gene as well as chromosomal domains. While silencing of the overlapping gene by antisense RNAs has been well investigated, their functional role in silencing of chromosomal domains remains enigmatic. To elucidate mechanisms underlying the non-coding RNA mediated epigenetic silencing of chromosomal domains, we have chosen an antisense non-coding RNA, Kcnq1ot1, as a model system. Previously, a functional role of Kcnq1ot1 RNA and/or its transcriptional process has been implicated in silencing of multiple genes in the Kcnq1 imprinted cluster. However, these studies could not rule out the mechanisms involving other than Kcnq1ot1 RNA. Furthermore, it was also unclear how the Kcnq1ot1 promoter escapes silencing when its encoded RNA is capable of silencing flanking genes in cis. We have shown that NF-Y transcription factor plays a central role in the Kcnq1ot1 promoter activity, and that mutation of the NF-Y binding sites not only resulted in loss of silencing of flanking genes but also the ability of the Kcnq1ot1 promoter to protect against repressive chromatin marks, indicating that NF-Y maintains transcription-competent chromatin at the promoter through resisting the strong silencing effects of Kcnq1ot1 RNA. The Kcnq1ot1 RNA is an RNA Polymerase II encoded 91 kb long moderately stable nuclear transcript. We have demonstrated that it is the RNA not the act of transcription responsible for silencing and that the degree of silencing was proportional to the length of Kcnq1ot1 RNA. The kinetics of heterochromatin formation in relation to Kcnq1ot1 transcription revealed that overlapping gene was silenced initially by occlusion of basal transcription machinery and heterochromatin formation, whereas nonoverlapping gene was silenced subsequently by Kcnq1ot1-mediated heterochromatin spreading. This transcriptional silencing by Kcnq1ot1 RNA is mediated by an 890 bp region through promoting its interaction with the chromatin. Interestingly, we show that Kcnq1ot1 RNA establishes heterochromatin structures in a lineage-specific fashion by interacting with chromatin and chromatin remodelling complexes such as G9a and PRC2 complexes. More importantly, one of the parental chromosomes comprising Kcnq1 domain always found in the vicinity of perinucleolar region. Based on these data we proposed a mechanism whereby Kcnq1ot1 RNA establishes transcriptional silencing through recruitment of chromatin remodelling machinery and the maintenance of silencing achieved via targeting to the perinucleolar region.
92

Characterization of AtSUVR3 functions in Arabidopsis thaliana using RNA interference

Wang, Tao 15 May 2009 (has links)
Variability of transgene expression levels resulting from gene silencing is considered as ahindrance to the successful application of plant genetic engineering. Towards alleviatinggene silencing, I decided to screen for novel genes involved in transgene silencing and toinvestigate how these genes regulate plant development. Genes encoding putative chromatinremodeling factors, especially those including a SET domain, were selected as candidatetargets. A bioinformatic analysis of the Arabidopsis SET genes (AtSET) was performed andthese genes were classified into 6 groups based on the domain architecture. RNA interference (RNAi) vectors were constructed for ~ 20 AtSET genes and wereintroduced into both wild type lines and transgenic lines silenced for a GFP reporter gene.Surprisingly, altered developmental phenotypes were only observed for three constructs,raising questions as to the effectiveness of the RNAi approach for the chosen Arabidopsissystem. To assess this situation, I targeted a phytoene desaturase (PDS) gene using the sameRNAi approach. Inactivation of PDS renders plant a readily identifiable phenotype. Whereasthe RNAi penetrance in Arabidopsis can be very high, the expressivity of RNAi in varioustissues and among different plants can vary dramatically. Contradictory to previous reports,I found that there is correlation between transcript level and silencing phenotype. Possiblereasons for this discrepancy are discussed. No apparent correlation between transgene copynumber and RNAi phenotypes was observed. Among the three RNAi constructs that caused an abnormal development inArabidopsis, K-23 which targets SuvR3 has the highest expressivity and could reactivate asilenced GFP locus. SuvR3 RNAi lines were selfed for six generations and were screenedfor morphological phenotypes. Abnormal number of flower organs, loss of viability of malegametophytes, and decreased seedling germination percentage were found in SuvR3 RNAilines. A progressive increase in both severity and frequency of abnormal phenotypes wereseen in subsequent generations, suggesting an epigenetic regulatory mechanism involvedwith SuvR3. Alternative splicing of SuvR3 was also observed in most of Arabidopsis tissues.One of the protein isoforms, SuvR3, lacks 16 amino acids within the highly conserved SETdomain. Possible effects of isoform interaction are proposed.
93

The Role of Chromatin Structure and Histone Modifications in Gene Silencing at the Ribosomal DNA Locus in Saccharomyces cerevisiae

Williamson, Kelly M. 2011 May 1900 (has links)
One of the fundamental questions in science is how chromatin transitions from actively transcribed euchromatin to silent heterochromatin, and what factors affect this transition. One area of my research has focused on understanding the differences in the chromatin structure of active and silent regions in the ribosomal DNA locus (rDNA), a heterochromatin region in S. cerevisiae. Secondly, I have focused on understanding a histone methyltransferase Set1, which is involved in both euchromatin and heterochromatin regions. To distinguish actively transcribed open regions of chromatin from silent and closed regions of chromatin, we have expressed a DNA methyltransferase M.CviPI in vivo to utilize its accessibility to GpC sites. We have used this technique to study changes in nucleosome positioning within the NTS2 region of the rDNA in two cases: as a result of a silencing defect caused by the loss of Sir2, a histone deacetylase involved in silencing at the rDNA, and as an indicator of active transcription by RNA Pol I. Using this technique, we observed differences between open and closed chromatin structure by changes in nucleosome positioning within NTS2. Additionally, we have observed the presence of bound factors within the 35S rRNA gene promoter that are unique to actively transcribed genes. The second area of my research focused on the protein methyltransferase Set1 that mono-, di-, and trimethylates lysine 4 of histone H3 (H3K4) utilizing the methyl group from S-adenosyl methionine (SAM). Set1 is part of a multi protein complex called COMPASS (Complex associated with Set1), and is associated with both actively transcribed and silent regions. Thirty mutants of Set1 were made within the SET domain to learn more about the catalytic mechanism of Set1. The crystal structures of human SET domain proteins, as well as sequence alignments and a random mutagenesis of yeast Set1, were used to identify conserved amino acids in the SET domain of Set1. Mutants were analyzed for their effect on histone methylation in vivo, silencing of RNA Pol II transcription within the rDNA, suppression of ipl1-2, and COMPASS complex formation. Our results show that trimethylated H3K4 is required for silencing of RNA Pol II transcription at the rDNA. Overall, we have shown the importance of tyrosine residues in SET domain proteins. To summarize, my research has strived to understand chromatin structure and the factors that affect the transition between euchromatin and heterochromatin.
94

Silencing of B cell activation factor gene and its implication in treating autoimmune arthritis

Lin, Yan-kai., 林欣佳. January 2007 (has links)
published_or_final_version / Medical Sciences / Master / Master of Medical Sciences
95

A functional approach to profiling candidate genes in non model Brassicales

Mankowski, Peter J. Unknown Date
No description available.
96

EVOLUTIONARY PERSPECTIVE OF NICOTINE TO NORNICOTINE CONVERSION, ITS REGULATION AND CHARACTERIZATION OF EIN2 MEDIATED ETHYLENE SIGNALING IN TOBACCO

Chakrabarti, Manohar 01 January 2010 (has links)
Nicotine, nornicotine, anabasine and anatabine are four major alkaloids in tobacco, of which nicotine is predominant. In many tobacco cultivars and also in other Nicotiana species, nicotine is converted to nornicotine, which in turn gives rise to potent carcinogen NNN. Nicotine to nornicotine conversion via nicotine-N-demethylation is mediated by the CYP82E family of P450 enzymes. Tobacco (Nicotiana tabacum) converts in senescing leaves, while its diploid progenitors N.tomentosiformis and N.sylvestris convert in both green and senescing and only in senescing leaves, respectively. Previously it has been shown that N.tomentosiformis has different active conversion loci in green and senescing leaves. The green leaf conversion enzyme CYP82E3 is inactivated in tobacco by a single amino acid substitution, while the senescing leaf converter enzyme CYP82E4 is active in tobacco, which gave tobacco a ‘senescing leaf converter’ phenotype. In nonconverter tobacco, CYP82E4 shows transcriptional silencing. The nicotine-N-demethylase gene NsylCYP82E2 involved in nicotine to nornicotine conversion in senesced leaves of N. sylvestris was isolated. NsylCYP82E2 is active in N. sylvestris, but it has become inactivated in tobacco through mutations causing two amino acid substitutions. The conversion factor from N.sylvestris was characterized and a model for the alkaloid profile evolution in the amphidiploid N.tabacum from its diploid progenitors was proposed. Regulation of conversion phenomenon was tested under different spatio-temporal conditions and various stresses. The promoter region for NtabCYP82E4 was isolated and promoter-reporter construct was used to determine that NtabCYP82E4 is specifically induced only during senescence. This pattern correlates with the nornicotine accumulation as measured by alkaloid profiling. Thus the regulatory regions of NtabCYP82E4 represent a senescence specific promoter. In another project functional characterization of tobacco EIN2 (NtabEIN2) was undertaken. EIN2 from tobacco and N.sylvestris were cloned, their genomic structure was deduced and NtabEIN2 was silenced using RNAi approach. Silenced plants showed significant delay in petal senescence and abscission; as well as anther dehiscence, pod maturation, pod size, seed yield and defense against tobacco hornworm. Mechanism of delayed petal senescence phenotype, including possible cross-talk with Auxin Response Factor 2 and potential involvement of tasiRNA3 were also investigated.
97

Doxorubicin resistance in a small cell lung cancer cell line can be abolished by siRNA down-regulation of cox 1

Aryal, Pratik January 2007 (has links)
Multidrug resistance (MDR) in small cell lung cancer is one of the major causes of failures of chemotherapy. MDR is a means of protection of tumor cells against chemotherapeutic drugs. Although the molecular basis of MDR is not fully understood, genes involved in apoptosis may be mutated. Recent finding of a link between over-expression of an apoptotic gene, cyclooxygenase 1 (cox 1), and MDR suggests that cox 1 is involved in the development of MDR phenotype. This research was an attempt to observe whether up-regulation of cox 1 contributes to the MDR phenotype in small cell lung cancer cells. This research ultimately may provide a mechanism to reverse the abberant up-regulation of apoptosis genes associated with multidrug resistance to either eliminate or control reproduction of cancer cells. Real time RT PCR was used to confirm the up-regulation of cox 1 in cultured MDR resistant small cell lung cancer cells (GLC4). The up-regulated cox 1 expression was down-regulated using RNA interference technology (RNAi) by transfection with an anti-cox 1 siRNA. More than 90% transfection of cells was confirmed using confocal microscopy. Down-regulation of cox 1 was validated as the protein expression significantly decreased (P=0.004) from multidrug resistant small cell lung cancer transfected cells compared to multidrug resistant nontransfected cells. There was decrease level of expression of cox 1 in multidrug resistant cells after the knockdown with siRNA specific to cox 1. The decreased level of cox 1 expression and, therefore, Cox 1 production increased the rate of apoptosis in small cell lung cancer cells as indicated by its sensitivity to the doxorubicin. / Department of Biology
98

Abolishing multidrug resistance in cultured lung cancer cells with RNA interference

Prajapati, Kamal 24 July 2010 (has links)
The gene, cox-1, is over-expressed in cultured GLC4 small cell lung cancer cells concurrent with the development of multi-drug resistance (MDR) as a result of the use of the chemotherapeutic agent used to combat the cancer, doxorubicin. Prevention of MDR has been a tremendous challenge in cancer research and this research is concerned with abolishment of MDR as a cancer survival strategy. RNA-mediated interference technology (RNAi) was employed using siRNA to decrease cox-1 expression and temporarily restore the susceptibility of the cells to doxorubicin. GLC4 cells are of three types: S (sensitive cells never exposed to doxorubicin); ADR (MDR cells cultured in doxorubicin), and; REV (revertant cells previously cultured in presence of doxorubicin but no longer). REV and ADR cells were transfected with cox-1 siRNA. After 24 h, 1x106cells were used for RNA isolation and 1 μg of RNA was used for RT-PCR to assess down-regulation of cox-1 RNA. RT-PCR results indicated that cox-1 RNA was down-regulated to basal levels seen before exposure to doxorubicin. Ct values for GLC4/ADR and cox-1 down-regulated GLC4/ADR cells were 23 and 34, respectively. The result indicated abundant levels and moderate levels of cox-1 mRNA in the ADR cells and the transfected ADR cells respectively. The relative expression level of cox-1 mRNA was 33% higher in the non-transfected GLCR/ADR cells as compared to the transfected GLCR/ADR cells as shown by the curve. Two hundred thousand cells were used for hemacytometer cell counts in the presence of trypan blue to assess cell viability. cox-1 down-regulation in ADR cells resulted in a significantly higher percentage of non-viable cells (25.4%) as compared to its non-transfected control (20.5%) using a Student’s t-test (*P <0.05). Similarly, fluorescence microscopy confirmed that apoptosis was significantly increased in the ADR cells treated with doxorubicin and cox-1 siRNA simultaneously (69.4%) as compared to its non-transfected control (56.7%) (*= P <0.01). A Western blot analysis performed by Fernando Cuadrado indicated that siRNA transfection decreased the expression of COX-1 by 66% in GLC4/ ADR cells as compared to the non-transfected control using densitometry. However, no conclusive results were obtained using flow cytometry as the flow cytometer was incapable of analyzing the mixed cell population (adherent and suspension) which is a characteristic of this cell line, GLC4. Thus, we have clearly demonstrated that MDR cancer cells can be altered temporarily to become susceptible to doxorubicin, a potentially important finding for the treatment of cancer patients. / Department of Biology
99

Toward Personalized Medicine: The potential role of RNA interference in Plasma Cell Dyscrasia

Phipps, Jonathan E 01 December 2011 (has links)
A major contributor to mortality in patients with plasma cell dyscrasias (PCDs); i.e., multiple myeloma, light chain deposition disease and AL amyloidosis is the deposition as insoluble aggregates of monoclonal immunoglobulin light chain proteins (LC) in the kidneys and other organs. Currently anti-plasma cell chemotherapies are used to reduce LC synthesis, and slow deposition. While effective, these treatments are toxic, non-specific, expensive, and might not be appropriate in all cases, making the identification of an alternate means of reducing toxic LC species desirable. To this end, we have investigated whether RNA interference (RNAi) could achieve these goals. Human (RPMI 8226, Bur) and transfected mouse myeloma (SP2/O-lambda 6) cells which produce measureable quantities of human LC protein were used as model systems for testing the efficacy of both synthetic small interfering RNAs (siRNAs) and short hairpin RNA (shRNA) expression vectors in reducing LC synthesis. Sequencing of LC genes provided the basis for design of siRNA duplexes targeting either the variable (V) or joining (J) regions of individual LCs, or the constant (C) region of either kappa or lambda LC isotypes. Myeloma lines were transfected with siRNAs using lipid-based transfection media. Cells receiving non-silencing siRNAs served as controls. Exposure of myeloma lines to siRNAs was well tolerated and no cytotoxicity was observed. LC mRNA expression was shown to be reduced ≥40% in 8226 and SP2/O- lambda 6 cell lines receiving siRNA treatment as compared with untreated controls. Exposure to siRNAs was also effective in significantly reducing both intracellular and secreted LC protein levels in cell lines tested as evidenced by flow cytometry or enzyme-linked immunosorbent assays (ELISAs). Effective siRNA nucleotide sequences were used to generate shRNA cassettes which were ligated into lentiviral expression vectors under the control of the RNA polymerase III promoter, U6. These expression systems were used to generate replication incompetent lentiviral particles. Exposure of 8226 to lentiviral particles resulted in significant knockdown of LC mRNA and protein both in vitro and in xenograft tumor bearing immune compromised mice. These results provide positive evidence for the ability of RNAi based approaches to reduce LC secretion in models of PCD.
100

Epigenetic modifiers of transgene silencing in the mouse

Daniel Morgan Unknown Date (has links)
It is well established that epigenetic modifications to the genome are crucial for the exquisite control of gene expression required for an organism to develop and differentiate. These modifications are maintained through mitotic rounds of cell division, but must be cleared and reset through meiosis in order for the cells of the early embryo to achieve totipotency. Although we know these mechanisms exist, the rules determining which modifications are established where on the genome and the genes involved in these processes remain poorly characterised. Much of what is known about epigenetic processes has come from studies in non-mammalian organisms, such as Drosophila. However, in our laboratory we have developed a mammalian system for identifying modifiers of epigenetic gene silencing. An ENU mutagenesis screen is being carried out using an inbred mouse line carrying a GFP transgene, with an erythroid-specific promoter, that is particularly sensitive to changes in epigenetic modifications. Currently, 14 mutant lines that display a heritable shift in GFP expression have been recovered. These have been termed Modifiers of Murine Metastable Epialleles (Mommes). When I began my PhD in 2005, we had not identified any of the mutations underlying the phenotypes observed. To confirm the efficacy of the screen, I have tested the effect of heterozygosity for null alleles of two known epigenetic modifiers, Dnmt3a and Dnmt3b, on expression of the GFP transgene. Heterozygosity for the Dnmt3b knockout allele does shift expression while heterozygosity for the Dnmt3a knockout allele does not. This highlights the limitations of the screen. With this particular screen we will only detect modifiers that are expressed during haematopoiesis in the bone marrow. I have also worked on MommeD5. MommeD5 is a semi-dominant, homozygous embryonic lethal mutation that acts as an enhancer of variegation. I have found that the MommeD5 allele carries a 7 bp deletion in the major histone deacetylase, Histone deacetylase 1 (Hdac1), and this significantly alters the C-terminus of the mutant protein. The finding of Hdac1 attests to the screen design. The MommeD5 homozygous mutants die at approximately the same time as the published knockout of Hdac1 and the heterozygous mutants show increased levels of Hdac2 and acetylated histone H3, as reported in Hdac1-deficient embryonic stem cells. In addition, I have studied the effect of heterozygosity for each of the mutations on the phenotype of the mouse. In general, heterozygous Momme mutants are viable and fertile, but show subtle abnormal phenotypes. However, in the case of MommeD5 none were observed and this may relate to the compensatory upregulation of other histone deacetylases. In the case of Dnmt3a and Dnmt3b a sex ratio distortion is seen in the colonies, with less males seen than expected. Also, Dnmt3a heterozygous mutant males that inherited the mutant allele from the dam are smaller and show an increased range of body weights compared to their wild-type male littermates. This may be an example of intangible variation, i.e. phenotypic variation observed in isogenic individuals raised in standardised environments. These results suggest that epigenetic mechanisms have a role in intangible variation, also known as developmental noise. Despite the fact that it is now acknowledged by many that stochastic events occur at the level of the cell, the idea that it can happen at the level of the whole organism is rarely considered.

Page generated in 0.0988 seconds