• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 71
  • 71
  • 45
  • 26
  • 18
  • 12
  • 12
  • 12
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

REFERENCE GENOMES AND GENETIC TOOLS FOR ANAEROBIC FUNGI

Casey A. Hooker (5930663) 07 December 2022 (has links)
<p>  Non-model microorganisms offer a wealth of biotechnological potential that may be leveraged to address a variety of global grand challenges. These include challenges in carrying out complex or altogether new chemistries, discovery and production of bioactive molecules, sustainable production of biochemicals and bioproducts from renewable feedstocks, and improving agricultural practices for responsible management of carbon. Specifically, using renewable plant biomass as a substrate for production of fuels and or chemicals offers a near ubiquitous supply that does not compete with food or petrochemicals. Alternatively, identifying new natural products will be essential to addressing the ever-increasing occurrence of antibiotic resistance. Non-model organisms may provide elegant solutions to many of these challenges, whether by possessing new or more efficient strategies to depolymerize lignocellulose, by encoding enzymes with increased stabilities and or specific activities, or perhaps by containing rich biosynthetic capabilities for production of previously unidentified natural products, among others. Yet efforts to leverage non-model microorganisms for their diverse biotechnological potential remain limited to a variety of often difficult, yet not insurmountable challenges.</p> <p>     In this work, I propose anaerobic gut fungi (Neocallimastigomycota) as a robust microbial system that may be leveraged to efficiently depolymerize crude lignocellulose, increase animal nutrition, or identify novel natural products. To this end, I detail the first chromosomally resolved genome assembly of anaerobic fungi (<em>Piromyces communis </em>var. <em>indianae</em> UH3-1). I investigate the genome organization of this isolate and describe how acquisition of Carbohydrate Active EnZymes (CAZymes) contribute to the robust lignocellulolytic activity of gut fungi. I then detail efforts to build a nascent genetic engineering toolbox for these anaerobic organisms. With the acquisition of the first chromosomally resolved genome assemblies, I identify a basic set of genetic parts needed for a genetic engineering toolkit. I show these parts are functional and detail methods to enable higher throughput testing in vivo. I subsequently detail efforts to construct the first preliminary CRISPR tools for anaerobic fungi as these will be essential to establish precise DNA targeting in future strain engineering efforts. I then describe the role of epigenetics in anaerobic fungi, detailing the extent to which it may be leveraged to control gene expression. Finally, I provide a discussion of this work and describe how it may guide future efforts to domesticate these organisms. Collectively, this work provides the first chromosomally resolved genome assembly as a resource for the community, along with genetic tools and techniques to begin domesticating these non-model organisms. Importantly, this work reveals that despite the challenges associated with anaerobic microbes of relatively high complexity, they are not insurmountable, and thus efforts to domesticate them are feasible.</p>
52

Delivery of CRISPR/Cas9 RNAs into Blood Cells of Zebrafish: Potential for Genome Editing in Somatic Cells

Schneider, Sara Jane 08 1900 (has links)
Factor VIII is a clotting factor found on the intrinsic side of the coagulation cascade. A mutation in the factor VIII gene causes the disease Hemophilia A, for which there is no cure. The most common treatment is administration of recombinant factor VIII. However, this can cause an immune response that renders the treatment ineffective in certain hemophilia patients. For this reason a new treatment, or cure, needs to be developed. Gene editing is one solution to correcting the factor VIII mutation. CRISPR/Cas9 mediated gene editing introduces a double stranded break in the genomic DNA. Where this break occurs repair mechanisms cause insertions and deletions, or if a template oligonucleotide can be provided point mutations could be introduced or corrected. However, to accomplish this goal for editing factor VIII mutations, a way to deliver the components of CRISPR/Cas9 into somatic cells is needed. In this study, I confirmed that the CRISPR/Cas9 system was able to create a mutation in the factor VIII gene in zebrafish. I also showed that the components of CRISPR/Cas9 could be piggybacked by vivo morpholino into a variety of blood cells. This study also confirmed that the vivo morpholino did not interfere with the gRNA binding to the DNA, or Cas9 protein inducing the double stranded break.
53

Investigating the PI3K/AKT/ATM Pathway, Telomeric DNA Damage, T Cell Death, and CRISPR/Cas9-mediated Gene Editing During Acute and Chronic HIV Infection

Khanal, Sushant 01 December 2022 (has links)
Human Immunodeficiency Virus (HIV) infection initiates major metabolic and cell- survival complications. Anti-retroviral therapy (ART) is the current approach to suppress active HIV replication to a level of undetected viral load, but it is not a curative approach. Newer and sophisticated gene editing technologies could indeed be a potent antiviral therapy to achieve a clinical sterilization/cure of HIV infection. Chronic HIV patients, even under a successful ART regimen, exhibit a low-grade inflammation, immune senescence, premature aging, telomeric DNA attrition, T cell apoptosis, and cellular homeostasis. In this dissertation, we investigated CD4 T cell homeostasis, degree of T cell apoptosis, an associated telomeric DNA damage, DNA damage repair signaling, and the apoptotic pathways in CD4 T cells during HIV infection with or without ART treatment. Our data support a DNA damage accumulation, and impaired DNA damage repair in chromosome ends via recruitment of 53BP1 protein to the damaged foci. We found that a key player of DNA damage and repair enzyme, ATM, and its associated checkpoint proteins (CHK1, CKH2) are affected by HIV infection. HIV infection also altered another multifunctional master regulator protein AKT that is crucial in maintaining cellular homeostasis. Curing HIV is the ultimate redemption against HIV-associated complications. To explore the possibility of a functional cure, we investigated the use of a transient and a non-viral CRISPR/Cas9-based gene editing technology targeting the latently incorporated HIV provirus. After performing a nucleofection/electroporation using an in vitro formulated ribonucleoprotein (RNP) constituting a synthetic guide RNA (gRNA) and Cas9 nuclease protein, we demonstrated a significant (maximum 97%) reduction of HIV-mRNA and p24-capsid protein expression, upon stimulation (using PMA) and latency reactivation of latently HIV-infected CD4 T cells and latent-monocytes. Notably, the RNP treatment did not induce any cytotoxic effects, without affecting the abilility of cell proliferation. A sequence specific cleavage of HIV-provirus in two crucial gene locations (targeting vpr/tat genes) showed the most significant suppression of HIV reactivation or latency reversal. We have used DNA sequencing, and T7EI assay to confirm the target-site-specific cleavage of the HIV-proviral genome. Our data confirm the activation of non- homologous end joining (NHEJ) pathway to repair the double-stranded DNA break created by the CRISPR/Cas9 treatment. Taken together, this study provides a new gene therapeutic approach using synthetic gRNA/Cas9 targeting HIV genome, which warrant further in vivo animal and human studies.
54

Discovery and evolution of novel Cre-type tyrosine site-specific recombinases for advanced genome engineering

Jelicic, Milica 06 December 2023 (has links)
Tyrosine site-specific recombinases (Y-SSRs) are DNA editing enzymes that play a valuable role for the manipulation of genomes, due to their precision and versatility. They have been widely used in biotechnology and molecular biology for various applications, and are slowly finding their spot in gene therapy in recent years. However, the limited number of available Y-SSR systems and their often narrow target specificity have hindered the full potential of these enzymes for advanced genome engineering. In this PhD thesis, I conducted a comprehensive investigation of novel Y-SSRs and their potential for advancing genome engineering. This PhD thesis aims to address the current limitations in the genetic toolbox by identifying and characterizing novel Cre-type recombinases and demonstrating their impact on the directed evolution of designer recombinases for precise genome surgery. To achieve these aims, I developed in a collaboration a comprehensive prediction pipeline, combining a rational bioinformatical approach with knowledge of the biological functions of recombinases, to enable high success rate and high-throughput identification of novel tyrosine site-specific recombinase (Y-SSR) systems. Eight putative candidates were molecularly characterized in-depth to ensure their successful integration into future genome engineering applications. I assessed their activity in prokaryotes (E. coli) and eukaryotes (human cell lines), and determined their specificity in the sequence space of all known Cre- type target sites. The potential cytotoxicity associated with cryptic genomic recombination sites was also explored in the context of recombinase applicability. This approach allowed the identification of novel Y-SSRs with distinct target sites, enabling simultaneous use of multiple Y-SSR systems, and provided knowledge that will facilitate the assignment of novel and known recombinases to specific uses or organisms, ensuring their safe and effective implementation. The introduction of these novel Y-SSRs into the genome engineering toolbox opens up new possibilities for precise genome manipulation in various applications. The broader targetability offered by these enzymes could accelerate the development of novel gene therapies, as well as advance the understanding of gene function and regulation. Moreover, these recombinases could be used to design custom genetic circuits for synthetic biology, allowing researchers to create more complex and sophisticated cellular systems. Finally, I introduced the novel Y-SSRs into efforts aimed at developing designer recombinases for precise genome surgery, demonstrating their impact on accelerating the directed evolution process. Therapeutically relevant recombinases with altered DNA specificity have been developed for excision or inversion of specific DNA sequences. However, the potential for evolving recombinases capable of integrating large DNA cargos into naturally occurring lox-like sites in the human genome remained untapped so far. Thus, I embarked on evolving the Vika recombinase to mediate the integration of DNA cargo into a native human sequence. I discovered that Vika could integrate DNA into the voxH9 site in the human genome, and then, I enhanced the process through directed evolution. The evolved variants of Vika displayed a marked improvement in integration efficiency in bacterial systems. However, the translation of these results into mammalian systems has not yet been entirely successful. Despite this, the study laid the groundwork for future research to optimize the efficiency and applicability of Y-SSRs for genomic integration. In summary, this thesis made significant strides in the identification, characterization, and development of novel Y-SSRs for advanced genome engineering. The comprehensive prediction pipeline, combined with in-depth molecular characterization, has expanded the genetic toolbox to meet the growing demand for better genome editing tools. By exploring efficiency, cross-specificity, and potential cytotoxicity, this research lays the foundation for the safe and effective application of novel Y-SSRs in various therapeutic settings. Furthermore, by demonstrating the potential of these recombinases to improve efforts in creating designer recombinases through directed evolution, this research has opened new avenues for precise genome surgery. The successful development and implementation of these novel recombinases have the potential to revolutionize gene therapy, synthetic biology, and our understanding of gene function and regulation.
55

Reverting the F508del-CFTR defect in Cystic Fibrosis with CRISPR-Cas technology

Carrozzo, Irene 26 April 2023 (has links)
Cystic Fibrosis (CF) is a common life-shortening autosomal recessive disease that affects over 100.000 people worldwide people worldwide. It is caused by mutations in the CF trans-membrane conductance regulator (CFTR) gene, that encodes for a membrane channel localized at the apical surface of epithelial cells where it has a crucial role in the secretion of chloride and bicarbonate. Over 2100 different CFTR mutations have been reported and among the pathogenic once the most common is F508del, located in the nucleotide-binding domain 1 (NBD1). F508del is a three-nucleotide deletion that results in the loss of a phenylalanine at position 508 in the protein and in the consequent CFTR degradation by the ubiquitin-proteasome system. Different attempts to correct F508del-CFTR gene were made using genome editing approaches, however deletions like F508del remain difficult to be repaired. Several studies reported that additional mutations (revertant mutations) in the F508del-CFTR gene can rescue both CFTR folding and activity, suggesting a potential novel strategy to correct F508del. For this reason, the first aim of this work was the identification of novel F508del-CFTR revertants that can rescue CFTR localization and function. We generated a library of mutants introducing random substitutions into the F508del-CFTR gene. Revertant mutations were isolated based on their ability to rescue the presence of CFTR at the plasma membrane (PM) in HEK293T cells and identified by Sanger sequencing. Restoration of CFTR maturation, localization, and function of the identified revertants was evaluated by western blot, flow cytometry analysis and YFP assay, reaching levels similar to the wild type CFTR. Then we used CRISPR-Cas technology to introduce selected revertant mutations, such as I539T, R553Q, G550E, R555K and R1070W, in the endogenous F508del-CFTR gene. Adenine and cytosine base editors (ABE and CBE) allow the insertion of the desired base conversion without the formation of double strand breaks. Efficient editing was evaluated through Sanger sequencing, reaching up to 60% of base conversion. CFTR rescue at the PM in edited cells was analyzed by flow cytometry showing different degrees of recovery compared to the wild type CFTR. In this work, we confirmed that revertant mutations can rescue F508del CFTR localization and function. In addition, we demonstrated that CRISPR-base editors are valid tools to introduce these mutations in the endogenous F508del-CFTR gene, leading to a permanent correction. The proposed strategy could overcome the limits that genome editing strategies faced till now in the correction of F508del, providing a new potential therapeutic approach to treat CF.
56

Novel Genetic Modifiers in a Monogenic Cardiac Arrhythmia

Chai, Shin Luen, Chai 31 May 2018 (has links)
No description available.
57

Mechanistic studies of enzymes involved in DNA transactions

Stephenson, Anthony Aaron 07 November 2018 (has links)
No description available.
58

MtSUPERMAN controls the number of flowers per inflorescence and floral organs in the inner three whorls of Medicago truncatula

Rodas Méndez, Ana Lucía 02 September 2021 (has links)
[ES] Las leguminosas son un grupo de plantas consideradas de gran importancia por su valor nutricional para la alimentación humana y ganadera. Además, las familias de leguminosas se caracterizan por rasgos distintivos de desarrollo como su inflorescencia compuesta y su compleja ontogenia floral. Para comprender mejor estas características distintivas, es importante estudiar los genes reguladores clave involucrados en el desarrollo de la inflorescencia y la flor. El gen SUPERMAN (SUP) es un factor transcripcional de dedos de zinc (Cys2-Hys2) considerado como un represor activo que controla el número de estambres y carpelos en A. thaliana. Además, SUP está involucrado en la terminación del meristemo floral y el desarrollo de los tejidos derivados del carpelo. El objetivo principal de este trabajo fue la caracterización funcional del ortólogo de SUP en la leguminosa modelo Medicago truncatula (MtSUP). Logramos este objetivo en base a un enfoque de genética reversa, análisis de expresión génica y ensayos de complementación y sobreexpresión. Nuestros resultados muestran que MtSUP es el gen ortólogo de SUP en M. truncatula. MtSUP comparte algunos de los roles ya descritos para SUP con algunas variaciones. Curiosamente, MtSUP controla la determinación del meristemo inflorescente secundario (I2) y de los primordios comunes (CP) a pétalos y estambres. Por tanto, MtSUP controla el número de flores y de pétalos-estambres que producen el meristemo I2 y los primordios comunes, respectivamente. MtSUP muestra funciones novedosas para un gen de tipo SUP, desempeñando papeles clave en los meristemos que confieren complejidad de desarrollo a esta familia de angiospermas. Este trabajo permitió identificar a MtSUP, un gen clave que forma parte de la red reguladora genética que subyace al desarrollo de la inflorescencia compuesta y de las flores en la leguminosa modelo M. truncatula. / [CA] Les lleguminoses són un gran grup de plantes considerades de gran importància pel seu valor nutricional per a l'alimentació humana i ramadera. A més, les famílies de lleguminoses es caracteritzen per trets distintius de desenrotllament com la seua inflorescència composta i la seua complexa ontogènia floral. Per a comprendre millor estes característiques distintives, és important estudiar els gens reguladors clau involucrats en la inflorescència i el desenrotllament floral. El gen SUPERMAN (SUP) és un factor transcripcional de dits de zinc (Cys2-Hys2) considerat com un repressor actiu que controla el nombre d'estams i carpels en A. thaliana. A més, SUP està involucrat en la terminació del meristemo floral i el desenrotllament dels teixits derivats del carpel. "L'objectiu principal d'este treball va ser la caracterització funcional de l'ortòleg de SUP en la lleguminosa model Medicago truncatula (MtSUP) . Aconseguim l'objectiu amb base en un enfocament genètic invers, anàlisi d'expressió gènica i assajos de complementació i sobreexpressió. Els nostres resultats mostren que MtSUP és el gen ortòleg de SUP en M. truncatula. MtSUP compartix alguns dels rols ja descrits per a SUP amb variacions. Curiosament, MtSUP està involucrat en la determinació del meristemo de la inflorescència secundària (I2) i els primordios comuns (CP). Per tant, MtSUP controla el nombre de flors i pètals-estams que produïxen el meristemo I2 i els primordios comuns, respectivament. MtSUP mostra funcions noves per a un gen tipus SUP, exercint papers clau en els meristemos que conferixen complexitat de desenrotllament a esta família d'angiospermes. "Este treball va permetre identificar a MtSUP, un gen clau que forma part de la xarxa reguladora genètica darrere de la inflorescència composta i el desenrotllament de flors en la lleguminosa model M. truncatula. / [EN] Legumes are a large group of plants considered of great importance for their nutritional value in human and livestock nutrition. Besides, legume families are characterized by distinctive developmental traits as their compound inflorescence and complex floral ontogeny. For a better understanding of these distinctive features is important to study key regulatory genes involved in the inflorescence and floral development. The SUPERMAN (SUP) gene is a zinc-finger (Cys2-Hys2) transcriptional factor considered to be an active repressor that controls the number of stamens and carpels in A. thaliana. Moreover, SUP is involved in the floral meristem termination and the development of the carpel marginal derived tissues. The main objective of this work was the functional characterization of the SUP orthologue in the model legume Medicago truncatula (MtSUP). We achieved this objective based on a reverse genetic approach, gene expression analysis, and complementation and overexpression assays. Our results show that MtSUP is the orthologous gene of SUP in M. truncatula. MtSUP shares some of the roles already described for SUP with variations. Interestingly, MtSUP controls the determinacy of the secondary inflorescence (I2) meristem and the common primordia (CP). Thus, MtSUP controls the number of flowers and petal-stamens produced by the I2 meristem and the common primordia respectively. MtSUP displays novel functions for a SUP-like gene, playing key roles in the meristems that confer developmental complexity to this angiosperm family. This work allowed to identify MtSUP, a key gene that participates in the genetic regulatory network underlying compound inflorescence and flower development in the model legume M. truncatula. / I would like to thanks the Spanish Ministry of Economy and Competitiveness for the grant (MINECO; BIO2016-75485-R) that supported this work. Special thanks to the Generalitat Valenciana for funding my doctorate with the Santiago Grisolía predoctoral scholarships / Rodas Méndez, AL. (2021). MtSUPERMAN controls the number of flowers per inflorescence and floral organs in the inner three whorls of Medicago truncatula [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/171474
59

Development and characterization of two new tools for plant genetic engineering: A CRISPR/Cas12a-based mutagenesis system and a PhiC31-based gene switch

Bernabé Orts, Juan Miguel 16 December 2019 (has links)
Tesis por compendio / [ES] La mejora genética vegetal tiene como objetivo la obtención de plantas con rasgos mejorados o características novedosas que podrían ayudar a superar los objetivos de sostenibilidad. Para este fin, la biotecnología vegetal necesita incorporar nuevas herramientas de ingeniería genética que combinen una mayor precisión con una mayor capacidad de mejora. Las herramientas de edición genética recientemente descubiertas basadas en la tecnología CRISPR/Cas9 han abierto el camino para modificar los genomas de las plantas con una precisión sin precedentes. Por otro lado, los nuevos enfoques de biología sintética basados en la modularidad y la estandarización de los elementos genéticos han permitido la construcción de dispositivos genéticos cada vez más complejos y refinados aplicados a la mejora genética vegetal. Con el objetivo final de expandir la caja de herramientas biotecnológicas para la mejora vegetal, esta tesis describe el desarrollo y la adaptación de dos nuevas herramientas: una nueva endonucleasa específica de sitio (SSN) y un interruptor genético modular para la regulación de la expresión transgénica. En una primera parte, esta tesis describe la adaptación de CRISPR/Cas12a para la expresión en plantas y compara la eficiencia de las variantes de Acidaminococcus (As) y Lachnospiraceae (Lb) Cas12a con Streptococcus pyogens Cas9 (SpCas9) descritos anteriormente en ocho loci de Nicotiana benthamiana usando expresión transitoria. LbCas12a mostró la actividad de mutagénesis promedio más alta en los loci analizados. Esta actividad también se confirmó en experimentos de transformación estable realizados en tres plantas modelo diferentes, a saber, N. benthamiana, Solanum lycopersicum y Arabidopsis thaliana. Para este último, los efectos mutagénicos colaterales fueron analizados en líneas segregantes sin la endonucleasa Cas12a, mediante secuenciación del genoma descartándose efectos indiscriminados. En conjunto, los resultados muestran que LbCas12a es una alternativa viable a SpCas9 para la edición genética en plantas. En una segunda parte, este trabajo describe un interruptor genético reversible destinado a controlar la expresión génica en plantas con mayor precisión que los sistemas inducibles tradicionales. Este interruptor, basado en el sistema de recombinación del fago PhiC31, fue construido como un dispositivo modular hecho de partes de ADN estándar y diseñado para controlar el estado transcripcional (encendido o apagado) de dos genes de interés mediante la inversión alternativa de un elemento regulador central de ADN. El estado del interruptor puede ser operado externa y reversiblemente por la acción de los actuadores de recombinación y su cinética, memoria y reversibilidad fueron ampliamente caracterizados en experimentos de transformación transitoria y estable en N. benthamiana. En conjunto, esta tesis muestra el diseño y la caracterización funcional de herramientas para la ingeniería del genómica y biología sintética de plantas que ahora ha sido completada con el sistema de edición genética CRISPR/Cas12a y un interruptor genético reversible y biestable basado en el sistema de recombinación del fago PhiC31. / [CA] La millora genètica vegetal té com a objectiu l'obtenció de plantes amb trets millorats o característiques noves que podrien ajudar a superar els objectius de sostenibilitat. Amb aquesta finalitat, la biotecnologia vegetal necessita incorporar noves eines d'enginyeria genètica que combinen una major precisió amb una major capacitat de millora. Les eines d'edició genètica recentment descobertes basades en la tecnologia CRISPR/Cas9 han obert el camí per modificar els genomes de les plantes amb una precisió sense precedents. D'altra banda, els nous enfocaments de biologia sintètica basats en la modularitat i l'estandardització dels elements genètics han permès la construcció de dispositius genètics cada vegada més complexos i sofisticats aplicats a la millora genètica vegetal. Amb l'objectiu final d'expandir la caixa d'eines biotecnològiques per a la millora vegetal, aquesta tesi descriu el desenvolupament i l'adaptació de dues noves eines: una nova endonucleasa específica de lloc (SSN) i un interruptor genètic modular per a la regulació de l'expressió transgènica . En una primera part, aquesta tesi descriu l'adaptació de CRISPR/Cas12a per a l'expressió en plantes i compara l'eficiència de les variants de Acidaminococcus (As) i Lachnospiraceae (Lb) Cas12a amb la ben establida Streptococcus pyogens Cas9 (SpCas9), en vuit loci de Nicotiana benthamiana usant expressió transitòria. LbCas12a va mostrar l'activitat de mutagènesi mitjana més alta en els loci analitzats. Aquesta activitat també es va confirmar en experiments de transformació estable realitzats en tres plantes model diferents, a saber, N. benthamiana, Solanum lycopersicum i Arabidopsis thaliana. Per a aquest últim, els efectes mutagènics col·laterals van ser analitzats en línies segregants sense l'endonucleasa Cas12a, mitjançant seqüenciació completa del genoma i descartant efectes indiscriminats. En conjunt, els resultats mostren que LbCas12a és una alternativa viable a SpCas9 per a l'edició genètica en plantes. En una segona part, aquest treball descriu un interruptor genètic reversible destinat a controlar l'expressió gènica en plantes amb major precisió que els sistemes induïbles tradicionals. Aquest interruptor, basat en el sistema de recombinació del bacteriòfag PhiC31, va ser construït com un dispositiu modular fet de parts d'ADN estàndard i dissenyat per controlar l'estat transcripcional (encès o apagat) de dos gens d'interès mitjançant la inversió alternativa d'un element regulador central d'ADN. L'estat de l'interruptor pot ser operat externa i reversiblement per acció dels actuadors de recombinació i la seva cinètica, memòria i reversibilitat van ser àmpliament caracteritzats en experiments de transformació transitòria i estable en N. benthamiana. En conjunt, aquesta tesi mostra el disseny i la caracterització funcional d'eines per a l'enginyeria del genòmica i biologia sintètica de plantes que ara ha sigut completat amb el sistema d'edició genètica CRISPR/Cas12a i un interruptor genètic biestable i reversible basat en el sistema de recombinació del bacteriòfag PhiC31. / [EN] Plant breeding aims to provide plants with improved traits or novel features that could help to overcome sustainability goals. To this end, plant biotechnology needs to incorporate new genetic engineering tools that combine increased precision with higher breeding power. The recently discovered genome editing tools based on CRISPR/Cas9 technology have opened the way to modify plant¿s genomes with unprecedented precision. On the other hand, new synthetic biology approaches based on modularity and standardization of genetic elements have enabled the construction of increasingly complex and refined genetic devices applied to plant breeding. With the ultimate goal of expanding the toolbox of plant breeding techniques, this thesis describes the development and adaptation to plant systems of two new breeding tools: a site-specific nuclease (SSNs), and a modular gene switch for the regulation of transgene expression. In a first part, this thesis describes the adoption of the SSN CRISPR/Cas12a for plant expression and compares the efficiency of Acidaminococcus (As) and Lachnospiraceae (Lb) Cas12a variants with the previously described Streptococcus pyogens Cas9 (SpCas9) in eight Nicotiana benthamiana loci using transient expression experiments. LbCas12a showed highest average mutagenesis activity in the loci assayed. This activity was also confirmed in stable genome editing experiments performed in three different model plants, namely N. benthamiana, Solanum lycopersicum and Arabidopsis thaliana. For the latter, off-target effects in Cas12a-free segregating lines were discarded at genomic level by deep sequencing. Collectively, the results show that LbCas12a is a viable alternative to SpCas9 for plant genome engineering. In a second part, this work describes the engineering of a new reversible genetic switch aimed at controlling gene expression in plants with higher precision than traditional inducible systems. This switch, based on the bacteriophage PhiC31 recombination system, was built as a modular device made of standard DNA parts and designed to control the transcriptional state (on or off) of two genes of interest by alternative inversion of a central DNA regulatory element. The state of the switch can be externally and reversibly operated by the action of the recombination actuators and its kinetics, memory, and reversibility were extensively characterized in N. benthamiana using both transient expression and stable transgenics. Altogether, this thesis shows the design and functional characterization of refined tools for genome engineering and synthetic biology in plants that now has been expanded with the CRISPR/Cas12a gene editing system and the phage PhiC31-based toggle switch. / Bernabé Orts, JM. (2019). Development and characterization of two new tools for plant genetic engineering: A CRISPR/Cas12a-based mutagenesis system and a PhiC31-based gene switch [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/133055 / Compendio
60

Research towards the effective disruption of reproductive competence in Nile tilapia Oreochromis niloticus

Jin, Yehwa January 2018 (has links)
Reproductive containment in farmed fish is highly desired for sustainable aquaculture to prevent genetic introgression with wild conspecifics and enhance productivity by suppressing sexual maturation. A number of strategies have already been implemented or have been tested in commercially important fish (e.g. triploidy, monosexing, hormonal therapies); however, they either do not result in 100% containment, or they cannot be applied to all species. One promising new approach consists in disrupting primordial germ cells (PGCs), at the origin of germline cells, to induce sterility. The work carried out in this doctoral thesis aimed to investigate the genes involved in the survival of germ cells and subsequently conduct a functional analysis of candidate genes using CRISPR/Cas9 gene editing system to ultimately provide the basis for the development of a novel sterilisation technique. Nile tilapia was chosen as the experimental animal as it is a major aquaculture species worldwide and the control of reproduction plays a critical role in the farming productivity in this species. In addition, the species has clear advantages as its whole genome sequence is accessible, the generation time is relatively short and zygotes can be available all year round. Initially, a panel of 11 candidate genes with reported roles in survival of PGCs was investigated during the ontogenic development which led to the selection of piwi-like (piwil) gene as a target for genome editing. Then, high temperature was tested as a means to induce germ cell loss to better understand the mechanism underlying germ cell survival and apoptosis, and this study confirmed the functional importance of piwil genes in relation to germ cell loss and proliferation. In addition, the study suggested potential subfunctionalisation within the Bcl-2 gene family which requires further investigation. The next step aimed to optimise the CRISPR/Cas9 gene editing method by improving the microinjection system and testing different concentrations of sgRNAs. Over 95% of injected embryos showed on-target mutation in piwil2 via zygote injection of CRISPR/Cas9 reagents and complete KO larvae were shown in half of the mutants, producing putative sterile fish. However, there was no clear association between the phenotypes in PGCs and the mutation rate. Further comparative studies of mutant screening methods including T7E1, RGEN, HRMA, fragment analysis and NGS revealed that the genotypes of F0 are highly mosaic, suggesting that deep sequencing is recommended for accurate and high throughput F0 screening and further improvement for predictable genome editing is required for a reliable gene functional analysis in F0. In summary, the current thesis provided new scientific knowledge and supporting evidence for the use of the CRISPR/Cas9 gene editing platform to study gene function associated with sterility, with the ultimate goal to develop an alternative sterilisation method in fish.

Page generated in 0.075 seconds