Spelling suggestions: "subject:"1genetic transformation."" "subject:"cogenetic transformation.""
71 |
Effects of flocculation on retrovirus processing, delivery and transductionLandázuri, Natalia. January 2005 (has links) (PDF)
Thesis (Ph. D.)--Biomedical Engineering, Georgia Institute of Technology, 2005. / Niren Murthy, Committee Member ; Andrš J. Garca̕, Committee Member ; Joseph M. Le Doux, Committee Chair ; Mark R. Prausnitz, Committee Member ; H. Trent Spencer, Committee Member. Includes bibliographical references.
|
72 |
Transcriptional changes in Nicotiana benthamiana induced by tobamoviral transfectionBusto, Jennifer Lee. January 2005 (has links)
Thesis (Ph. D.)--University of Hawaii at Manoa, 2005. / Includes bibliographical references.
|
73 |
The influence of pollinator diversity and behaviour on pollen movement in Brassica rapa chinensis (pak-choi) crops, and its significance for gene escape : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Science, University of Canterbury, New Zealand /Mesa, Laura A. January 2008 (has links)
Thesis (M. Sc.)--University of Canterbury, 2008. / Typescript (photocopy). Includes bibliographical references (leaves 62-79). Also available via the World Wide Web.
|
74 |
The Contribution of Horizontal Gene Transfer to the Evolution of FungiHall, Charles Robert, January 2007 (has links) (PDF)
Thesis (Ph. D.)--Duke University, 2007. / Includes bibliographical references.
|
75 |
Evaluating transmission barriers to Escherichia coli x Saccharomyces cerevisiae interkingdom conjugation : project report [i.e. thesis] submitted in partial fulfillment of the requirements for the degree M. Sc. (Hons.) in the School of Biological Sciences, University of Canterbury /Haslett, Nicholas David. January 1900 (has links)
Thesis (M. Sc.)--University of Canterbury, 2006. / Typescript (photocopy). "16 November 2006." Includes bibliographical references (leaves 99-112). Also available via the World Wide Web.
|
76 |
The construction of an expression vector for the transformation of the grape chloroplast genomeRobson, Julia 12 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2003. / ENGLISH ABSTRACT: The genetic information of plants is found in the nucleus, the mitochondria, and the plastids. The
DNA of plastids is comprised of multiple copies of a double-stranded, circular, prokaryoticallyderived
genome of -150 kb. The genome equivalents of plastid organelles in higher plant cells are an
attractive target for genetic engineering as high protein expression levels are readily obtained due to
the high genome copy number per organelle. The resultant proteins are contained within the plastid
organelle and the corresponding transgenes are inherited, in most crop plants, uniparentally,
preventing pollen transmission of DNA.
Plastid transformation involves the uniform modification of all the plastid genome copies, a process
facilitated by homologous recombination and the non-Mendelian segregation of plastids upon cell
division. The plastid genomes are in a continuous state of inter- and intra-molecular exchange due to
their common genetic complement. This enables the site-specific integration of any piece of DNA
flanked by plastid targeting sequences, via homologous recombination. The attainment of
homoplasmy, where all genomes are transformed, requires the inclusion of a plastid-specific selectable
marker. Selective pressure favouring the propagation of the transformed genome copies, as well as the
random segregation of plastids upon cell division, make it feasible to acquire uniformity and hence
genetic stability. From this, a complete transplastomie line is obtained where all plastid genome
copies present are transgenic, having eliminated all wild-type genome copies.
The prokaryotic nature of the chloroplast genetic system enables expression of multiple proteins from
polycistronic mRNAs, allowing the introduction of entire operons in a single transformation.
Expression cassettes in vectors thus include single regulatory elements of plastid origin, and harbour
genes encoding selectable and screenable markers, as well as one or more genes of interest. Each
coding region is preceded by an appropriate translation control region to ensure efficient translation
from the polycistronic mRNA.
The function of a plastid transformation vector is to enable transfer and stable integration of foreign
genes into the chloroplast genomes of higher plants. The expression vector constructed in this
research is specific for the transformation of the grape chloroplast genome. Vitis vinifera L., from the
family, Vitaceae, is the choice species for the production of wine and therefore our target for plastid
transformation. All chloroplast derived regulatory elements and sequences included in the vector thus
originated from this species. / AFRIKAANSE OPSOMMING: Die genetiese inligting van plante word gevind in die kern, die mitochondria, en die plastiede. Die
DNA van plastiede bestaan uit veelvuldige kopieë van 'n ~ 150 kb dubbelstring, sirkulêre genoom van
prokariotiese oorsprong. Die genoomekwivalente van plastiede in hoër plante is 'n aantreklike teiken
vir genetiese manipulering, aangesien die hoë genoom kopiegetal per organel dit moontlik maak om
gereeld hoë vlakke van proteïenuitdrukking te verkry. Hierdie proteïene word tot die plastied beperk,
en die ooreenstemmende transgene word in die meeste plante sitoplasmies oorgeërf, sonder die
oordrag van DNA deur die stuifmeel.
Plastied transformasie behels die uniforme modifikasie van al die plastied genoomkopieë, 'n proses
wat deur homoloë rekombinasie en die nie-Mendeliese segregasie van plastiede tydens seldeling
gefasiliteer word. As gevolg van die gemeenskaplike genetiese komplement, vind aanhoudende interen
intra-molekulêre uitruiling van plastiedgenome plaas. Dit maak die setel-spesifieke integrasie, via
homoloë rekombinasie, van enige stuk DNA wat deur plastied teikenvolgordes begrens word,
moontlik. Vir die verkrying van homoplasmie, waar alle genome getransformeer is, word die
insluiting van 'n plastiedspesifieke selekteerbare merker benodig. Seleksiedruk wat die vermeerdering
van die getransformeerde genoomkopieë bevoordeel, en die lukrake segregasie van plastiede tydens
seldeling, maak dit moontlik om genetiese stabiliteit en uniformiteit van die genoom te verkry. Dit
kan op sy beurt tot die verkryging van 'n volledige transplastomiese lyn lei, waar alle aanwesige
plastiedgenome transgenies is, en wilde tipe genoomkopieë geëlimineer is.
Die prokariotiese aard van die chloroplas genetiese sisteem maak die uitdrukking van veelvuldige
proteïene vanaf polisistroniese mRNAs moontlik, wat die toevoeging van volledige operons in 'n
enkele transformasie toelaat. Uitdrukkingskassette in vektore bevat dus enkel regulatoriese elemente
van plastied oorsprong, gene wat kodeer vir selekteerbare en sifbare merkers, asook een of meer gene
van belang (teikengene). Voor elke koderingsstreek, is daar ook 'n toepaslike translasie beheerstreek
om doeltreffende translasie vanaf die polisistroniese mRNA te verseker.
Die funksie van 'n plastied transformasie vektor is om die oordrag en stabiele integrasie van transgene
in chloroplasgenome van hoër plante moontlik te maak. Die uitdrukkingsvektor wat in hierdie studie
gekonstrueer is, is spesifiek vir die transformasie van die druif chloroplasgenoom. Vitis vinifera L.,
van die familie Vitaceae, is die voorkeur species vir die produksie van wyn, en daarom die teiken vir
plastied transformasie. Alle chloroplast-afgeleide regulatoriese elemente en volgordes wat in hierdie
vektor ingesluit is, het huloorsprong vanaf VUis vinifera L.
|
77 |
FIELD IMPLEMENTATION OF <em>PHANEROCHAETE CHRYSOSPORIUM</em> BIOMASS PRETREATMENT: FUNGAL IDENTIFICATION AND INOCULATION TECHNIQUESCarey, Bobby D, Jr 01 January 2014 (has links)
Scaling biological pretreatment from the bench scale to the production scale may be more economical if unsterilized feedstock are used, however these allow for microbial competition from contaminates. An accurate and rapid method for identifying the desired biological pretreatment organism is necessary to confirm the presence of the desired organism when contaminates are morphologically similar to the target organism. Traditional methods, such as visual identification, sequencing, and selective plating can be time consuming and are sometimes still inconclusive. Based on methods described in the literature, plasmid DNA containing the marker genes gus (�-glucuronidase), LacZ, and gfp (green fluorescence protein) incorporated into the lignin-degrading basidiomycete Phanerochaete chrysosporium would result in a rapid genetic test for the desired organism. The presence of these genes can be confirmed either through an X-Gluc (cyclohexylammonia salt), X-Gal histochemical assay or observing the gfp’s fluorescence by a specially equipped confocal microscope. Each reporter systems will allow for rapid, reliable identification of the target species. This study will report on the success of the transformation methods in creating a transformed fungus to be used in the context of a large-scale fermentation operation.
Additionally, a novel in-harvest lignocellulose feedstock biological pretreatment inoculation trial was performed comparing lignolytic performance between fungal inoculum application techniques. Optimization of carbohydrate availability for enhanced saccharification was determined by analyzing glucose release by treated and non-treated unsterilized switchgrass. This study also focused on identifying parameters to enhance saccharification efficacy at the farm-scale.
|
78 |
Reação de plantas transgênicas de Passiflora alata à infecção com o Cowpea aphid-borne mosaic virus / Reaction of Passiflora alata transgenic plants to Cowpea aphid-borne mosaic virus infectionMarcelo Favareto Correa 23 September 2014 (has links)
A cultura do maracujazeiro é de grande importância econômica para o Brasil, porém problemas fitossanitários vêm limitando a sua produção. A doença do endurecimento dos frutos causada pelo Cowpea aphid-borne mosaic virus (CABMV), é atualmente a principal doença que afeta a cultura do maracujazeiro, tendo ocorrência generalizada no Brasil, diminuindo a produtividade e a longevidade dos pomares. Devido à ineficiência dos métodos convencionais de controle desta doença, a biotecnologia mostra-se como uma ferramenta para auxiliar na obtenção de plantas resistentes ao patógeno com o uso de técnicas de transformação genética. Com o intuito de obter plantas resistentes ao CABMV, Pinto (2010) regenerou 48 plantasde P. alataem experimentos de transformação genética via Agrobacteriumtumefaciens, utilizando uma construção gênica do tipo hairpin, a qual contém um fragmento do gene da proteína capsidial do CABMV, baseando-se no conceito de resistência derivada do patógeno (PDR). Foram identificadas 22 plantas transgênicas por PCR utilizando primers específicos para amplificação do gene CP. A integração do transgene foi confirmada via Southern blot, com sonda para detecção do gene de seleção nptII. As plantas identificadas como transgênicas por PCR foram propagadas (4 plantas por linhagem), inoculadas mecanicamente com o CABMV (3x) e analisadas por teste de ELISA. As plantas infectadas foram descartadas e as remanescentes foram inoculadas por afídeos virulíferos. Após 30 dias as plantas inoculadas foram analisadas por RT-PCR e RT-qPCR para detecção do patógeno. Todas as linhagens transgênicas inoculadas indicaram a presença do vírus em pelo menos 3 dos 4 clones inoculados. Foram selecionadas 3 plantas nas quais o vírus não foi detectado após 3 inoculações mecânicas e uma via vetor, e 3 plantas que apresentaram baixa titulação viral. Estas plantas serão propagadas para plantio em campo e avaliação de resistência à infecção pelo CABMV em condições naturais de infecção / The passion fruit crop has an expressive economic importance in Brazil, however phytosanitary problems has been limiting its production. The passion fruit woodiness disease caused by Cowpea aphid-borne mosaic virus (CABMV) it\'s the currently main disease, decreasing productivity and the longevity of orchards and has a widespread occurrence in Brazil. Due to the inefficiency of the conventional methods for controlling this disease, genetic transformation techniques shown as an alternative way for obtaining pathogen resistant transgenic plants. In order to obtain transgenic plants resistant to the CABMV, Pinto (2010) regenerated 48 plants from genetic transformation experiments with P. alata using a hairpin genetic construct containing a CABMV coat protein gene fragment, based on the PDR (pathogen-derived resistance) concept, were 22 transgenic lineages were identified by PCR for the CP gene. The transgene integration was confirmed by Southern blot with a probe for the nptII gene. The transgenic plants were propagated in a total of 4 plants per lineage and then inoculated mechanically for 3 times with the CABMV. The viral replication was confirmed by ELISA. The infected plants were discarded after each inoculation and the remaining were inoculated by viruliferous aphids and analyzed by RT-PCR and RT-qPCR. All inoculated transgenic lines shown the presence of the virus in at least 3 of 4 clones. After the inoculations,3 plants showed no symptoms and 3 a very low viral titration. These plants will be propagated for field tests in natural conditions of infection by CABMV
|
79 |
Subsídios à transformação genética de plantas de Catasetum pileatum (Orchidaceae) por meio de tecidos merismáticos radiculares e caulinares / Subsidy for genetic transformation of Catasetum pileatum (Orchidaceae) plants using root and shoot meristematic tissuesCintia Tiemi Shigihara 05 May 2008 (has links)
Os estudos sobre a conversão in vitro de meristemas apicais radiculares em gemas caulinares de plantas do gênero Catasetum vêm contribuindo para uma melhor compreensão dos processos de competência, indução e determinação celular no processo de desenvolvimento, necessitando, no momento, de aprofundamento em estudos moleculares. Para tanto, a utilização de plantas transgênicas representa uma ferramenta de trabalho importante. Além disso, os métodos de transformação genética acenam como uma alternativa eficaz para o melhoramento de plantas de interesse econômico com ciclos reprodutivos longos, como as orquídeas. Desta forma, o objetivo deste projeto foi estabelecer um protocolo para transformação genética de Catasetum pileatum, utilizando tecidos meristemáticos como explantes alvos. Para tanto, avaliou-se o potencial de alguns promotores na expressão de uidA em tecidos de C. pileatum, dentre os quais destacaram-se o 35S de CaMV, o promotor do gene Pthi1 e o de PTE027, sendo que os dois primeiros foram utilizados para os experimentos de transformação genética permanente. Como explantes alvos para a transformação, foram testadas tanto gemas laterais de caules estiolados (CEs) quanto ápices radiculares (ARs), além de segmentos radiculares subapicais (SRs). Para obtenção de estruturas com maior quantidade de células em divisão celular, foi estabelecido um protocolo de cultura de tecidos a partir de segmentos radiculares subapicais (SRs). Na região proximal destes segmentos, estabeleceu-se uma estrutura globular e intumescida na presença de 0,5mg.L-1 de BA. Cortes histológicos destas intumescências revelaram a presença de grande quantidade de células em intensa divisão celular, levando, em estágios mais avançados, à formação de gemas caulinares superficiais. Estas originavam plantas após um mês em meio propício para este fim. Estes explantes foram submetidos a várias concentrações de higromicina, sendo que as concentrações escolhidas para seleção de tecidos transformados foram de 25mg.L-1 para CEs e ARs e 10mg.L-1 para SRs. CEs e ARs foram bombardeados com micropartículas de tungstênio contendo DNA plasmidial adsorvido (P35S:uidA ou Pthi1:uidA) e transferidos para meio seletivo após uma, duas ou três semanas. No entanto, estes não foram capazes de sobreviver em meio seletivo após dois meses de seleção. SRs foram bombardeados com P35S:uidA ou Pthi1:uidA. Estes foram capazes de expressar uidA entre 48h até quatro semanas, sendo que após três meses de seleção, foi observada uma gema azul transformada com Pthi1. As melhores condições para a transformação foram as seguintes: bombardeamento dos SRs recém-isolados, manutenção por duas semanas em meio não seletivo e, por fim, transferência para meio com higromicina até o término de três meses. Não obstante a necessidade de refinamentos dos procedimentos utilizados e de análises moleculares adicionais, estes resultados constituem os primeiros a indicarem a possibilidade de obtenção de plantas transgênicas de Catasetum pileatum. / Research on in vitro conversion of root apical meristems into buds in Catasetum has contributed to a better understanding of competence, induction and cellular determination processes during plant development. Nowadays It demands advances in molecular studies. To achieve this, the use of transgenic plants is an important working tool. Furthermore, genetic transformation methods seem to be an efficient alternative for improvement of commercial plants with longlife cycles, such as orchids. Therefore, the aim of these studies was to establish a protocol for genetic transformation of Catasetum pileatum, using meristematic tissues as target explants. The potential of some gene promoters to induce the expression of uidA was evaluated in C. pileatum tissues. CaMV 35S, Pthi and the PTE027 showed the best results among all tested. The CaMV 35S and the Pthi1 were used in the permanent genetic transformation experiments. Lateral buds of shoot explants (CEs), root apices (ARs) and root segments (SRs) were tested as target explants for transformation. In order to obtain material containing higher quantity of proliferating cells, a tissue culture protocol was established using root segments (SRs). The formation of a globular structure on the proximal region of the explants was observed in the presence of 0.5mg.L-1 of BA. Histological sections of these structures showed the presence of a huge quantity of cells in intense cellular division. In advanced stages, it was observed superficial bud formation on the structures. These buds have the capacity to produce whole plants within one month, in appropriated culture medium. Explants were exposed to a range of hygromycin concentrations and thereupon concentrations of 25mg.L-1 and 10mg.L-1 were chosen for selecting CEs and ARs, and for selection of SRs, respectively. CEs and ARs were bombarded with tungsten microparticules containing adsorbed plasmidial DNA (P35S:uidA or Pthi1:uidA) and it was transferred to selective medium after one, two or three weeks. Nevertheless, these explants were not capable to survive in selective medium after two months. SRs were also bombarded with P35S:uidA or Pthi1:uidA. These explants expressed uidA between 48 hours and four weeks. After three months of selection, it was possible to see a blue stained bud transformed with Pthi1. The best conditions for genetic transformation of C. pileatum were followed: bombardment of newly isolated SRs, maintenance for two weeks in non-selective medium followed of transference to hygromicin medium up to three months. Although additional experiments will still be necessary to refine transformation methods and conduct molecular analysis, the results from the present study are the first reference about genetic transformation of Catasetum pileatum plants.
|
80 |
Agrobacterium-mediated transformation of common bean (Phaseolus vulgaris L.)Korban, Martine January 1994 (has links)
No description available.
|
Page generated in 0.1446 seconds