• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Entwicklung von "screening"-Methoden zur Analyse von PTGS-basierter Resistenz gegen Nepoviren in Pflanzen

Winterhagen, Patrick. January 2006 (has links)
Hohenheim, Univ., Diss., 2006.
2

Gene Silencing und das Abutilon Mosaik Virus

Krenz, Björn, January 2007 (has links)
Stuttgart, Univ., Diss., 2007.
3

Involvements of the plant 3'-5' exonuclease ERL1 in chloroplast ribosomal RNA biogenesis and RNA silencing pathways

Schumacher, Heiko Tobias. Unknown Date (has links)
Univ., Diss., 2009--Kassel.
4

Die Rolle des Tyrosinkinase-Rezeptors VEGFR-2 im neuronalen Kontext

Groot, Marcel 20 December 2006 (has links) (PDF)
Im Rahmen dieser Arbeit wurde die Rolle des Rezeptors VEGFR-2, Flk-1, im neuronalen Kontext untersucht. In einem ersten Schritt wurde in embryonalen Stammzellen der Maus das fluoreszierende Protein eGFP unter der Kontrolle regulatorischer Sequenzen des flk-1-Promotors, -Enhancers exprimiert. Nach der Differenzierung zu Sphäroiden wurden Endothelzellen nachgewiesen, die sowohl eGFP als auch das zelltypspezifische Oberflächenantigen CD31 ausprägen. Ebenso wurden nach der neuronalen Differenzierung in Gegenwart von Stromazellen eGFP-exprimierende Zellen identifiziert. Diese standen mit Zellen, die das für neuronale Vorläuferzellen charakteristische Protein Nestin ausprägten, in einem räumlichen Zusammenhang. Die Vorgehensweise, die Inaktivierung des flk-1-Gens mit der Differenzierung embryonaler Stammzellen in vitro zu kombinieren, sollte hier die Interpretation des Phänotyps des flk-1-defizienten Mausmodells ermöglichen. Der Rezeptor war während der neuronalen Differenzierung der Stammzellen auf Stromazellen in vitro für die Regulation der Anzahl der Vorläuferzellen essentiell. Ferner spielte der Rezeptor im Rahmen eines weiteren Differenzierungsmodells, das auf der Zugabe relevanter Wachstumsfaktoren beruht, eine instruktive Rolle im Hinblick auf die Identität der Neuronen. Kriterium war hier die differentielle Expression Homeobox-enthaltender Transkriptionsfaktoren. In einem zweiten Schritt wurden mit Hilfe dieses Modells differentiell-exprimierte Gene von Stammzellen des Wildtyps sowie Zellen mit einer Inaktivierung des flk-1-Gens nach der neuronalen Differenzierung durch subtraktive Hybridisierung in Verbindung mit der PCR identifiziert. Tatsächlich wurde das Protein PEA-15 nicht nur differentiell exprimiert sondern auch als Bestandteil des VEGFR-2-vermittelten Signalwegs identifiziert. Die biologischen Funktionen des Proteins PEA-15 wurden durch VEGF-vermittelte Phosphorylierung reguliert. Die Stimulation durch VEGF führte zunächst zu einer Aktivierung des Proteinkinase B-, Akt-Signalwegs. Für die Stimulation des Akt-Signalwegs war die Phosphorylierung der intrazellulären Tyrosinreste Y1052 und Y1057 des Rezeptors essentiell. Damit einhergehend wurde PEA-15 gegenüber der proteasomalen Degradation stabilisiert. Es wurde gezeigt, daß das Protein PEA-15 die Teilungsaktivität von Zellen beeinflusst. Die VEGF- vermittelte Stimulation führte zur Phosphorylierung der Mitogen-aktivierten Proteinkinasen ERK1 und ERK2. Die weitere Phosphorylierung der Substrate dieser Kinasen im Zellkern wurde durch Interaktion mit PEA-15 unterdrückt. Die Regulation des c-fos-Promotors war zugleich Indikator der Inhibition der Phosphorylierung betreffender Substrate sowie der proliferativen Aktivität. Auf diese Weise ist die Phosphorylierung von PEA-15 nach Stimulation durch VEGF für die Selektivität des Flk-1-vermittelten Signalwegs von unmittelbarer Bedeutung. Die Regulation der biologischen Funktion von PEA-15 erklärt die differentielle Ausprägung im Rahmen der neuronalen Differenzierung embryonaler Stammzellen in vitro. So war die Anzahl GFAP- beziehungsweise PEA-15-exprimierender Zellen nach Differenzierung muriner Stammzellen mit einer Inaktivierung des flk-1-Gens deutlich geringer. Die differentielle Expression identifizierter Gene wurde im Mausmodell nach konditionaler Inaktivierung des flk-1-Gens überprüft. Tatsächlich wurde Vimentin in verschiedenen Arealen des Gehirns differentiell ausgeprägt. Ein Zusammenhang zwischen der differentiellen Expression des Proteins PEA-15, der Anzahl GFAP-exprimierender Zellen und der Ausprägung des Rezeptors Flk-1 ergab sich aus der Identifikation einer Zellpopulation in der subgranulären Zone des Gyrus Dentatus. Dort wurde in flk-1-defizienten, adulten Mäusen eine geringere Anzahl GFAP-exprimierender Zellen nachgewiesen. Schließlich wurden sowohl im Cerebellum als auch im Cortex histologische Unterschiede deutlich, die sich im adulten Organismus aus der Inaktivierung des Rezeptors Flk-1 ergeben. Die vorliegende Arbeit zeigt, daß der Rezeptor VEGFR-2, Flk-1, im neuronalen Kontext eine Rolle spielt, die sich nicht ausschließlich auf die Vermittlung eines Schutzmechanismus gegenüber der neuronalen Apoptose beschränkt, sondern auch auf eine Beteiligung an der Neurogenese hinweist. Die Vorgehensweise, mit Hilfe der subtraktiven Hybridisierung Bestandteile Rezeptor-vermittelter Signalwege vor dem Hintergrund der Differenzierung embryonaler Stammzellen zu identifizieren, verdeutlicht die Eignung der Methode auch bei komplexen Zellpopulationen.
5

Die Rolle des Tyrosinkinase-Rezeptors VEGFR-2 im neuronalen Kontext

Groot, Marcel 20 November 2006 (has links)
Im Rahmen dieser Arbeit wurde die Rolle des Rezeptors VEGFR-2, Flk-1, im neuronalen Kontext untersucht. In einem ersten Schritt wurde in embryonalen Stammzellen der Maus das fluoreszierende Protein eGFP unter der Kontrolle regulatorischer Sequenzen des flk-1-Promotors, -Enhancers exprimiert. Nach der Differenzierung zu Sphäroiden wurden Endothelzellen nachgewiesen, die sowohl eGFP als auch das zelltypspezifische Oberflächenantigen CD31 ausprägen. Ebenso wurden nach der neuronalen Differenzierung in Gegenwart von Stromazellen eGFP-exprimierende Zellen identifiziert. Diese standen mit Zellen, die das für neuronale Vorläuferzellen charakteristische Protein Nestin ausprägten, in einem räumlichen Zusammenhang. Die Vorgehensweise, die Inaktivierung des flk-1-Gens mit der Differenzierung embryonaler Stammzellen in vitro zu kombinieren, sollte hier die Interpretation des Phänotyps des flk-1-defizienten Mausmodells ermöglichen. Der Rezeptor war während der neuronalen Differenzierung der Stammzellen auf Stromazellen in vitro für die Regulation der Anzahl der Vorläuferzellen essentiell. Ferner spielte der Rezeptor im Rahmen eines weiteren Differenzierungsmodells, das auf der Zugabe relevanter Wachstumsfaktoren beruht, eine instruktive Rolle im Hinblick auf die Identität der Neuronen. Kriterium war hier die differentielle Expression Homeobox-enthaltender Transkriptionsfaktoren. In einem zweiten Schritt wurden mit Hilfe dieses Modells differentiell-exprimierte Gene von Stammzellen des Wildtyps sowie Zellen mit einer Inaktivierung des flk-1-Gens nach der neuronalen Differenzierung durch subtraktive Hybridisierung in Verbindung mit der PCR identifiziert. Tatsächlich wurde das Protein PEA-15 nicht nur differentiell exprimiert sondern auch als Bestandteil des VEGFR-2-vermittelten Signalwegs identifiziert. Die biologischen Funktionen des Proteins PEA-15 wurden durch VEGF-vermittelte Phosphorylierung reguliert. Die Stimulation durch VEGF führte zunächst zu einer Aktivierung des Proteinkinase B-, Akt-Signalwegs. Für die Stimulation des Akt-Signalwegs war die Phosphorylierung der intrazellulären Tyrosinreste Y1052 und Y1057 des Rezeptors essentiell. Damit einhergehend wurde PEA-15 gegenüber der proteasomalen Degradation stabilisiert. Es wurde gezeigt, daß das Protein PEA-15 die Teilungsaktivität von Zellen beeinflusst. Die VEGF- vermittelte Stimulation führte zur Phosphorylierung der Mitogen-aktivierten Proteinkinasen ERK1 und ERK2. Die weitere Phosphorylierung der Substrate dieser Kinasen im Zellkern wurde durch Interaktion mit PEA-15 unterdrückt. Die Regulation des c-fos-Promotors war zugleich Indikator der Inhibition der Phosphorylierung betreffender Substrate sowie der proliferativen Aktivität. Auf diese Weise ist die Phosphorylierung von PEA-15 nach Stimulation durch VEGF für die Selektivität des Flk-1-vermittelten Signalwegs von unmittelbarer Bedeutung. Die Regulation der biologischen Funktion von PEA-15 erklärt die differentielle Ausprägung im Rahmen der neuronalen Differenzierung embryonaler Stammzellen in vitro. So war die Anzahl GFAP- beziehungsweise PEA-15-exprimierender Zellen nach Differenzierung muriner Stammzellen mit einer Inaktivierung des flk-1-Gens deutlich geringer. Die differentielle Expression identifizierter Gene wurde im Mausmodell nach konditionaler Inaktivierung des flk-1-Gens überprüft. Tatsächlich wurde Vimentin in verschiedenen Arealen des Gehirns differentiell ausgeprägt. Ein Zusammenhang zwischen der differentiellen Expression des Proteins PEA-15, der Anzahl GFAP-exprimierender Zellen und der Ausprägung des Rezeptors Flk-1 ergab sich aus der Identifikation einer Zellpopulation in der subgranulären Zone des Gyrus Dentatus. Dort wurde in flk-1-defizienten, adulten Mäusen eine geringere Anzahl GFAP-exprimierender Zellen nachgewiesen. Schließlich wurden sowohl im Cerebellum als auch im Cortex histologische Unterschiede deutlich, die sich im adulten Organismus aus der Inaktivierung des Rezeptors Flk-1 ergeben. Die vorliegende Arbeit zeigt, daß der Rezeptor VEGFR-2, Flk-1, im neuronalen Kontext eine Rolle spielt, die sich nicht ausschließlich auf die Vermittlung eines Schutzmechanismus gegenüber der neuronalen Apoptose beschränkt, sondern auch auf eine Beteiligung an der Neurogenese hinweist. Die Vorgehensweise, mit Hilfe der subtraktiven Hybridisierung Bestandteile Rezeptor-vermittelter Signalwege vor dem Hintergrund der Differenzierung embryonaler Stammzellen zu identifizieren, verdeutlicht die Eignung der Methode auch bei komplexen Zellpopulationen.
6

Generierung und Analyse EMA/E2F-6-defizienter Mäuse

Pohlers, Michael 12 December 2005 (has links)
The present study focuses on the biological functions of the transcription factor EMA/E2F-6, a member of the E2F-family of transcription factors that play an import role in cell cycle progression, differentiation and apoptosis. EMA/E2F-6 functions as a transcriptional repressor by recruiting a large protein complex, that includes polycomb group proteins, to specific target genes in order to silence their expression. To identify the biological functions of EMA/E2F-6 mice lacking this factor were developed and subsequently analysed. EMA/E2F6-/- mice are born with the expected frequency, are fertile and develop normally up to 18 months of age. Then about 25 % of these mice develop a paralysis of the hind limbs and present with a severe primary myelination defect of the spinal cord (and in part of peripheral nerves, too) that is accompanied by a massive infiltration of macrophages. Importantly, the histological findings were also detected in EMA/E2F-6-/- mice lacking clinical symptoms albeit to a lesser extend. With respect to EMA/E2F-6 association with polycomb group (Pc-G) proteins there were no significant findings such as skeletal transformations. In addition, only a mild proliferation defect of T-lymphocytes was observed that, in a more severe form, is typical for Pc-G mutations in the mice. Surprisingly, embryonic fibroblasts from EMA/E2F-6-/- mice have no obvious cell cycle defects. Accordingly, gene expression profiles showed that classical E2F target genes were normally regulated in these cells. However, EMA/E2F-6-/- fibroblasts ubiquitously express genes like alpha-tubulin-3 and -7 that are normally expressed in a strictly testis-specific manner. All EMA/E2F-6-dependent target genes identified contain a conserved E2F-binding site in their promoters that is required both for EMA/E2F-6 binding and regulation.

Page generated in 0.0958 seconds