• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 120
  • 26
  • 8
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 250
  • 250
  • 250
  • 118
  • 75
  • 71
  • 50
  • 46
  • 42
  • 41
  • 36
  • 35
  • 35
  • 33
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Dissecting heterogeneity in GWAS meta-analysis

Magosi, Lerato Elaine January 2017 (has links)
Statistical heterogeneity refers to differences among results of studies combined in a meta-analysis beyond that expected by chance. On the one hand, excessive heterogeneity can diminish power to discover genetic signals; on the other, moderate heterogeneity can reveal important biological differences among studies. Given its double-edged nature, this thesis dissects heterogeneity in genetic association meta-analyses from three vantage points. First, a novel multi-variant statistic, M is proposed to detect genome-wide (systematic) heterogeneity patterns in genetic association meta-analyses. This was motivated by the limited availability of appropriate methodology to measure the impact of heterogeneity across genetic signals, since traditional metrics (Q, I<sup>2</sup> and T<sup>2</sup>) measure heterogeneity at individual variants. Second, given that meta-analyses comprising small numbers of studies typically report imprecise summary effect estimates; GWAS-derived empirical heterogeneity priors are used to improve precision in estimation of average genetic effects and heterogeneity in smaller meta-analyses (e.g. ≤ 10 studies). Third, a critical evaluation of the Han-Eskin random-effects model shows how it can identify small effect heterogeneous loci overlooked by traditional fixed and random-effects methods. This work draws attention to the existence of genome-wide heterogeneity patterns, to reveal systematic differences among the ascertainment criteria of participating studies in a meta-analysis of coronary disease (CAD) risk. Furthermore, simulation studies with the Han-Eskin random-effects model revealed inflated genetic signals at small effect loci when heterogeneity levels were high. However, it did reveal an additional CAD risk variant overlooked by traditional meta-analysis methods. We therefore recommend a holistic approach to exploring heterogeneity in meta-analyses which assesses heterogeneity of genetic effects both at individual variants with traditional statistics and across multiple genetic signals with the M statistic. Furthermore, it is critically important to review forest plots for small effect loci identified using the Han-Eskin random-effects model amidst moderate-to-high heterogeneity (I<sup>2</sup> ≥ 40%).
222

Um método para seleção de atributos em dados genômicos

Oliveira, Fabrízzio Condé de 26 November 2015 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-05-05T18:05:07Z No. of bitstreams: 1 fabrizziocondedeoliveira.pdf: 6115188 bytes, checksum: 9810536208119e2012e4ee9015470c3e (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-06-07T15:41:26Z (GMT) No. of bitstreams: 1 fabrizziocondedeoliveira.pdf: 6115188 bytes, checksum: 9810536208119e2012e4ee9015470c3e (MD5) / Made available in DSpace on 2016-06-07T15:41:26Z (GMT). No. of bitstreams: 1 fabrizziocondedeoliveira.pdf: 6115188 bytes, checksum: 9810536208119e2012e4ee9015470c3e (MD5) Previous issue date: 2015-11-26 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Estudos de associação em escala genômica buscam encontrar marcadores moleculares do tipo SNP que estão associados direta ou indiretamente a um fenótipo em questão tais como, uma ou mais características do indivíduo ou, até mesmo, uma doença. O SNP pode ser a própria mutação causal ou pode estar correlacionado com a mesma por serem herdados juntos. Para identi car a região causadora ou promotora do fenótipo, a qual não é conhecida a priori, milhares ou milhões de SNPs são genotipados em amostras compostas de centenas ou milhares de indivíduos. Com isso, surge o desa o de selecionar os SNPs mais informativos no conjunto de dados genotípico, onde o número de atributos é, geralmente, muito superior ao número de indivíduos, com a possibilidade de que existam atributos altamente correlacionados e, ainda, podendo haver interações entre pares, trios ou combinações de SNPs de quaisquer ordens. Os métodos mais usados em estudos de associação em escala genômica utilizam o valor-p de cada SNP em testes estatísticos de hipóteses, baseados em regressão para fenótipos contínuos e baseados nos testes qui-quadrado ou similares em classi cação para fenótipos discretos, como ltro para selecionar os SNPs mais signi cativos. Entretanto, essa classe de métodos captura somente SNPs com efeitos aditivos, pois a relação adotada é linear. Na tentativa de superar as limitações de procedimentos já estabelecidos, este trabalho propõe um novo método de seleção de SNPs baseado em técnicas de Aprendizado de Máquina e Inteligência Computacional denominado SNP Markers Selector (SMS). O modelo é construído a partir de uma abordagem que divide o problema de seleção de SNPs em três fases distintas: a primeira relacionada à análise de relevância dos marcadores, a segunda responsável pela de nição do conjunto de marcadores relevantes que serão considerados por meio de uma estratégia de corte com base em um limite de relevância dos marcadores e, nalmente, uma fase para o re namento do processo de corte, geralmente para diminuir marcadores falsos-positivos. No SMS, essas três etapas, foram implementadas utilizando-se Florestas Aleatórias, Máquina de Vetores Suporte e Algoritmos Genéticos respectivamente. O SMS objetiva a criação de um uxo de trabalho que maximize o potencial de seleção do modelo através de etapas complementares. Assim, espera-se aumentar o potencial do SMS capturar efeitos aditivos e/ou não-aditivos com interação moderada entre pares e trios de SNPs, ou até mesmo, interações de ordens superiores com efeitos que sejam minimamente detectáveis. O SMS pode ser aplicado tanto em problemas de regressão (fenótipo contínuo) quanto de classi cação (fenótipo discreto). Experimentos numéricos foram realizados para avaliação do potencial da estratégia apresentada, com o método sendo aplicado em sete conjuntos de dados simulados e em uma base de dados real, onde a capacidade de produção de leite predita de vacas leiteiras foi medida como fenótipo contínuo. Além disso, o método proposto foi comparado com os métodos baseados no valor-p e com o Lasso Bayesiano apresentando, de forma geral, melhores resultados do ponto de vista de SNPs verdadeiros-positivos nos dados simulados com efeitos aditivos juntamente com interações entre pares e trios de SNPs. No conjunto de dados reais, baseado em 56.947 SNPs e um único fenótipo relativo à produção de leite, o método identi cou 245 QTLs associados à produção e à composição do leite e 90 genes candidatos associados à mastite, à produção e à composição do leite, sendo esses QTLs e genes identi cados por estudos anteriores utilizando outros métodos de seleção. Assim, o método demonstrou ser competitivo frente aos métodos utilizados para comparação em cenários complexos, com dados simulados ou reais, o que indica seu potencial para estudos de associação em escala genômica em humanos, animais e vegetais. / Genome-wide association studies have as main objective to discovery SNP type molecular markers associated directly or indirectly to a speci c phenotype related to one or more characteristics of an individual or even a disease. The SNP could be the causative mutation itself or correlated with the causative mutation due to common inheritance. Aiming to identify the causal or promoter region of the phenotype, which is unknown a priori, thousands or millions of SNPs are genotyped in samples composed of hundreds or thousands of individuals. Therefore, emerges the necessity to confront a challenge of selecting the most informative SNPs in genotype data set where the number of attributes are, usually, much higher than the number of individuals. Besides, the possibility of highly correlated attributes should be considered, as well as interactions between pairs, trios or combinations of high order SNPs. The most usual methods applied on genomewide association studies adopt the p-value of each SNP as a lter to select the SNPs most signi cant. For continuous phenotypes the statistical regression-based hypothesis test is used and the Chi-Square test or similar for classi cation of discrete phenotypes. However, this class of methods capture only SNPs with additive e ects, due to the linear relationship considered. In an attempt to overcome the limitations of established procedures, this work proposes a new SNPs selection method, named SNP Markers Selector (SMS), based on Machine Learning and Computational Intelligence strategies. The model is built considering an approach which divides the SNPs selection problem in three distinct phases: the rst related to the evaluation of the markers relevance, a second responsible for the de nition of the set of the relevant markers that will be considered by means of a cut strategy based on a threshold of markers relevance and, nally, a phase for the re nement of the cut process, usually to diminish false-positive markers. In the SMS, these three steps were implemented using Random Forests, Support Vector Machine and Genetic Algorithms, respectively. The SMS intends to create a work ow that maximizes the SNPs selection potential of the model due to the adoption of steps considered complementary. In this way, there is an increasing expectation on the performance of the SMS to capture additive e ects, moderate non-additive interaction between pairs and trios of SNPs, or even, higher order interactions with minimally detectable e ects. The SMS can be applied both in regression problems (continuous phenotype) as in classi cation problems (discrete phenotype). Numerical experiments were performed to evaluate the potential of the strategy, with the method being applied in seven sets of simulated data and in a real data set, where milk production capacity predicated of dairy cows was measured as continuous phenotype. Besides, the comparison of the proposed method with methods based on p-value and Lasso Bayesian technique indicate, in general, competitive results from the point of view of true-positive SNPs using simulated data set with additive e ects in conjunction with interactions of pairs and trios of SNPs. In the real data, based on 56,947 SNPs and a single phenotype of milk production, the method identi ed 245 QTLs associated with milk production and composition and 90 candidate genes associated with mastitis, milk production and composition, standing out that these QTLs and genes were identi ed by previous studies using other selection methods. Thus, the experiments showed the potential of the method in relation to other strategies when complex scenarios with simulated or real data are adopted, indicating that the work ow developed to guide the construction of the method should be considered for genome-wide asociation studies in humans, animals and plants.
223

Genetic susceptibility to childhood bronchiolitis

Pasanen, A. (Anu) 15 May 2018 (has links)
Abstract Bronchiolitis is an infection of the small airways of the lung and is a common reason for infant hospitalizations. The most common causative pathogen is the respiratory syncytial virus (RSV). Genetic factors are thought to influence the risk of bronchiolitis, and better knowledge of bronchiolitis genetics will likely help to elucidate the disease process. Severe bronchiolitis in childhood may predispose to asthma. Therefore, an effective treatment of bronchiolitis may affect the present-day as well as lifelong respiratory health. In this project, we aimed to identify genetic loci of bronchiolitis susceptibility by a genome-wide association study (GWAS) and suitable follow-up studies, and to study a previously asthma-associated CDHR3 variant for association across five bronchiolitis populations by meta-analysis. We performed the GWAS on a Finnish-Swedish case-control population and identified several loci below the suggestive genome-wide significance level. Of these, three variants showed nominal associations in a replication population from the Netherlands. One of the loci affected KCND3 expression, and two others were intergenic variants with putative regulatory potential. In a follow-up study conducted on a GWAS sub population, we identified the NKG2D locus as a candidate of susceptibility to bronchiolitis. The genomic region encompassing NKG2D variants was reportedly associated with NKG2D mRNA and protein abundance. We validated the association between NKG2D genotypes and protein expression with flow cytometry. The association between NKG2D and bronchiolitis was supported by a Finnish replication study. The meta-analysis was performed on populations from Denmark, Finland, Sweden, Germany, and the Netherlands. A potential virus-specific role for the CDHR3 variant was detected in a population that comprised mostly RSV-negative cases. In conclusion, we identified new candidates of bronchiolitis susceptibility in GWAS and subsequent studies. We found the CDHR3 variant was a potential susceptibility factor in severe non-RSV bronchiolitis and asthma. Our preliminary results provide interesting starting points for further studies. In the future, better understanding of the disease mechanisms and the relationship of bronchiolitis and asthma could provide means to design new therapeutic options. / Tiivistelmä Bronkioliitti on viruksen aiheuttama alahengitystieinfektio, joka usein johtaa pienten lasten sairaalahoitoon. Yleisin bronkioliitin aiheuttaja lapsilla on respiratory syncytial -virus (RSV). Perintötekijöiden arvellaan altistavan bronkioliitille, joten uusi tieto altistavista geeneistä voi auttaa ymmärtämään taudin taustalla olevia biologisia mekanismeja. Lapsuusiän bronkioliitin ajatellaan voivan altistaa astmalle, joten bronkioliitin tehokas hoito voi vaikuttaa merkittävästi hengitysterveyteen myös pitkällä aikavälillä. Työssä pyrittiin selvittämään lapsuusajan bronkioliitille altistavia geneettisiä tekijöitä genominlaajuisella assosiaatiokartoituksella, joka toteutettiin suomalais-ruotsalaisessa tapaus-verrokkiväestössä. Löydökset pyrittiin varmentamaan soveltuvilla jatkotutkimuksilla. Lisäksi tarkastelimme astmalle altistavaa CDHR3-geenin polymorfismia viidessä eurooppalaisessa bronkioliittikohortissa käyttäen meta-analyysia. Assosiaatiokartoituksessa havaittiin useita mahdollisia bronkioliittialttiuteen vaikuttavia geenikohtia. Näistä kolme sai tukea hollantilaisessa väestössä tehdyssä assosiaatioanalyysissä, jossa testattiin assosiaatiokartoituksen lupaavimmat löydökset. Yksi altistavista polymorfismeista vaikutti KCND3-geenin ilmentymiseen, ja kaksi muuta olivat geenien välisiä, mahdollisesti geeninsäätelyyn osallistuvia variantteja. Assosiaatiokartoituksen osa-analyysissä NKG2D tunnistettiin mahdolliseksi bronkioliitille altistavaksi geeniksi. NKG2D-immuunireseptorin alentunut ilmentyminen voi tulostemme perusteella altistaa vakavalle bronkioliitille. Meta-analyysissä, jonka tutkimuskohortit olivat peräisin Tanskasta, Suomesta, Ruotsista, Saksasta ja Hollannista, todettiin mahdollinen yhteys CDHR3-geenin polymorfismin ja muun viruksen kuin RSV:n aiheuttaman bronkioliitin välillä. Toteutimme tässä työssä ensimmäisen genominlaajuisen bronkioliittialttiutta koskevan assosiaatiokartoituksen. Assosiaatiokartoituksessa, sitä seuranneissa jatkotutkimuksissa ja meta-analyysissä tunnistimme useita lupaavia alttiusgeenejä, mutta tuloksemme vaativat varmentamista suuremmissa tutkimusväestöissä.
224

Deciphering causal genetic determinants of red blood cell traits

Lessard, Samuel 04 1900 (has links)
Les études d’association pan-génomiques ont révélé plusieurs variants génétiques associés à des traits complexes. Les mesures érythrocytaires ont souvent fait l’objet de ce genre d’études, étant mesurées de façon routinière et précise. Comprendre comment les variations génétiques influencent ces phénotypes est primordial étant donné leur importance comme marqueurs cliniques et leur influence sur la sévérité de plusieurs maladies. En particulier, des niveaux élevés d’hémoglobine fœtal chez les patients atteints d’anémie falciforme est associé à une réduction des complications et une augmentation de l’espérance de vie. Néanmoins, la majorité des variants génétiques identifiés par ces études tombent à l’intérieur de régions génétiques non-codantes, augmentant la difficulté d’identifier des gènes causaux. L’objectif premier de ce projet est l’identification et la caractérisation de gènes influençant les traits complexes, et tout particulièrement les traits sanguins. Pour y arriver, j’ai tout d’abord développé une méthode permettant d’identifier et de tester l’effet de gènes knockouts sur les traits anthropométriques. Malgré un échantillon de grande taille, cette approche n’a révélé aucune association. Ensuite, j’ai caractérisé le méthylome et le transcriptome d’érythroblastes différentiés à partir de cellules souches hématopoïétiques et identifié plusieurs gènes potentiellement impliqués dans les programmes érythroïdes fœtaux et adultes. Par ailleurs, j’ai identifié plusieurs micro-ARNs montrant des motifs d’expression spécifiques entre les stages fœtaux et adultes et qui sont enrichis pour des cibles exprimées de façon opposée. Finalement, j’ai identifié plusieurs variants génétiques associés à l’expression de gènes dans les érythroblastes (eQTL). Cette étude a permis d’identifier des variants associés à l’expression du gène ATP2B4, qui encode le principal transporteur de calcium des érythrocytes. Ces variants, qui sont également associés à des traits sanguins et à la susceptibilité à la malaria, tombent dans un élément d’ADN spécifique aux cellules érythroïdes. La délétion de cet élément par le système CRISPR/Cas9 induit une forte diminution de l’expression du gène et une augmentation des niveaux de calcium intracellulaires. En conclusion, des échantillons de génotypages exhaustifs seront nécessaires pour étudier l’effet de gènes knockouts sur les traits complexes. Les érythroblastes montrent de grandes différences au niveau de leur méthylome et transcriptome entre les différents stages développementaux. Ces différences influencent potentiellement la régulation de l’hémoglobine fœtale et impliquent de nombreux micro-ARNs et régions régulatrices non-codantes. Finalement, l’exemple d’ATP2B4 montre qu’intégrer des études épigénomiques, transcriptomiques et des expériences d’édition de génome est une approche puissante pour caractériser des variants génétiques non-codants. Par ailleurs, ces résultats impliquent ATP2B4 dans l’hydratation des érythroblastes, qui est associé à la susceptibilité à la malaria et la sévérité de l’anémie falciforme. Cibler ATP2B4 de façon thérapeutique pourrait avoir un impact majeur sur ces maladies qui affectent des millions d’individus à travers le monde. / Genome-wide association studies (GWAS) have revealed several genetic variants associated with complex phenotypes. This is the case for red blood cell (RBC) traits, which are particularly amenable to GWAS as they are routinely and accurately measured. Understanding RBC trait variation is important given their significance as clinical markers and modifiers of disease severity. Notably, increased fetal hemoglobin (HbF) production in sickle cell disease (SCD) patients is associated with a higher life expectancy and decreased morbidity. Nonetheless, most variants identified through GWAS fall in non-coding regions of the human genome, increasing the difficulty of identifying causal links. The main goal of this project was to identify and characterize genes influencing complex traits, and in particular RBC phenotypes. First, I developed an approach to identify and test potential gene knockouts affecting anthropometric traits in a large sample from the general population, which did not yield significant associations. Then, I characterized the DNA methylome and transcriptome of erythroblasts differentiated ex vivo from hematopoietic progenitor stem cells (HPSC), and identified several genes potentially implicated in fetal and adult-stage erythroid programs. I also identified microRNAs (miRNA) that show specific developmental expression patterns and that are enriched in inversely expressed targets. Finally, I mapped expression quantitative trait loci (eQTL) in erythroblasts, and identify erythroid-specific eQTLs for ATP2B4, the main calcium ATPase of RBCs. These genetic variants are associated with RBC traits and malaria susceptibly, and overlap an erythroid-specific enhancer of ATP2B4. Deletion of this regulatory element using CRISPR/Cas9 experiments in human erythroid cells minimized ATP2B4 expression and increased intracellular calcium levels. In conclusion, large and comprehensive genotyping datasets will be necessary to test the role of rare gene knockouts on complex phenotypes. The transcriptomes and DNA methylomes of erythroblasts show substantial differences correlating with their developmental stages and that may be implicated in HbF production. These results also suggest a strong implication of erythroid enhancers and miRNAs in developmental stage specificity. Finally, characterizing the erythroid-specific enhancer of ATP2B4 suggest that integrating epigenomic, transcriptomic and gene editing experiments can be a powerful approach to characterize non-coding genetic variants. These results implicate ATP2B4 in erythroid cell hydration, which is associated with malaria susceptibility and SCD severity, suggesting that therapies targeting this gene could impact diseases affecting millions of individuals worldwide.
225

Functional Analysis of the TRIB1 Locus in Coronary Artery Disease

Douvris, Adrianna January 2011 (has links)
The TRIB1 locus (8q24.13) is a novel locus associated with plasma TGs and CAD risk. Trib1 is a regulator of MAPK activity, and has been shown to regulate hepatic lipogenesis and VLDL production in mice. However, the functional relationship between common SNPs at the TRIB1 locus and plasma lipid traits is unknown; TRIB1 has not been identified as an eQTL. This cluster of SNPs falls within an intergenic region 25kb to 50kb downstream of the TRIB1 coding region. By phylogenetic footprinting analysis and DNA genotyping, we identified an evolutionarily conserved region (CNS1) within the risk locus that harbours two common SNPs in tight LD with GWAS risk SNPs and significantly associated with CAD. We investigated the regulatory function of CNS1 by luciferase reporter assays in HepG2 cells and demonstrate that this region has promoter activity. In addition, the rs2001844 risk allele significantly reduces luciferase activity, suggesting that altered expression of the EST-based gene may be associated with plasma TGs. We identified an EST within the risk locus directly downstream of CNS1. We performed 5'/3' RACE using HepG2 RNA, identified multiple variants of this EST-based gene, and confirmed its transcription start site within CNS1. We hypothesize that this EST is a long noncoding RNA due to low abundance, poor conservation, and absence of significant ORF. Over-expression of a short variant implicates its function in the regulation of target gene transcription, although the mechanism of action remains unknown. We conclude that the risk locus at 8q24.13 harbours a novel EST-based gene that may explain the relationship between GWAS SNPs at this locus and plasma lipid traits.
226

A Genome-Wide Association Study Suggests Novel Loci Associated with a Schizophrenia-Related Brain-Based Phenotype

Hass, Johanna, Walton, Esther, Kirsten, Holger, Liu, Jingyu, Priebe, Lutz, Wolf, Christiane, Karbalai, Nazanin, Gollub, Randy, White, Tonya, Rößner, Veit, Müller, Kathrin U., Paus, Tomas, Smolka, Michael N., Schumann, Gunter, Scholz, Markus, Cichon, Sven, Calhoun, Vince, Ehrlich, Stefan 22 January 2014 (has links)
Patients with schizophrenia and their siblings typically show subtle changes of brain structures, such as a reduction of hippocampal volume. Hippocampal volume is heritable, may explain a variety of cognitive symptoms of schizophrenia and is thus considered an intermediate phenotype for this mental illness. The aim of our analyses was to identify single-nucleotide polymorphisms (SNP) related to hippocampal volume without making prior assumptions about possible candidate genes. In this study, we combined genetics, imaging and neuropsychological data obtained from the Mind Clinical Imaging Consortium study of schizophrenia (n = 328). A total of 743,591 SNPs were tested for association with hippocampal volume in a genome-wide association study. Gene expression profiles of human hippocampal tissue were investigated for gene regions of significantly associated SNPs. None of the genetic markers reached genome-wide significance. However, six highly correlated SNPs (rs4808611, rs35686037, rs12982178, rs1042178, rs10406920, rs8170) on chromosome 19p13.11, located within or in close proximity to the genes NR2F6, USHBP1, and BABAM1, as well as four SNPs in three other genomic regions (chromosome 1, 2 and 10) had p-values between 6.75×10−6 and 8.3×10−7. Using existing data of a very recently published GWAS of hippocampal volume and additional data of a multicentre study in a large cohort of adolescents of European ancestry, we found supporting evidence for our results. Furthermore, allelic differences in rs4808611 and rs8170 were highly associated with differential mRNA expression in the cis-acting region. Associations with memory functioning indicate a possible functional importance of the identified risk variants. Our findings provide new insights into the genetic architecture of a brain structure closely linked to schizophrenia. In silico replication, mRNA expression and cognitive data provide additional support for the relevance of our findings. Identification of causal variants and their functional effects may unveil yet unknown players in the neurodevelopment and the pathogenesis of neuropsychiatric disorders.
227

Stratégies d'analyses multi-marqueurs pour identifier des gènes et des interactions gène-gène impliqués dans le mélanome cutané / Multi-Marker Analytical Strategies to Identify Genes and Gene-Gene Interactions Associated with Cutaneous Melanoma

Brossard, Myriam 14 December 2015 (has links)
Le mélanome cutané est un cancer des cellules de la peau (mélanocytes) qui se situe, en France, au 11e rang des cancers les plus fréquents. Sa mortalité reste élevée lorsqu’il est diagnostiqué à un stade tardif. Ce cancer résulte de nombreux facteurs génétiques, environnementaux et des interactions entre ces facteurs. La susceptibilité génétique à ce cancer recouvre un large spectre de variabilité génétique, depuis des mutations rares conférant un risque élevé jusqu’à des variants fréquents conférant un risque modeste. C’est dans le cadre de l’identification de variants fréquents liés à l’apparition du mélanome et à son pronostic que se situe mon travail de thèse. À ce jour, les études d’associations pangénomiques du mélanome ont identifié des variants fréquents à effets relativement modestes qui expliquent seulement une part de la composante génétique. Les variants fonctionnels au sein des régions identifiées sont le plus souvent inconnus. Les études pangénomiques ont eu principalement recours à des analyses simple-marqueur qui peuvent manquer de puissance pour détecter des variants ayant un effet individuel faible ou interagissant avec d’autres variants. L’objectif principal de ce travail de thèse a été de proposer des stratégies d’analyse multi-marqueurs pour identifier de nouveaux gènes impliqués dans le mélanome et pour caractériser des variants potentiellement fonctionnels au sein des régions du génome associées au mélanome.Pour identifier de nouveaux gènes associés au risque de mélanome et à un facteur pronostique de ce cancer (l’indice de Breslow), nous avons proposé une stratégie d’analyse multi-marqueurs qui intègre une analyse de pathways biologiques basée sur la méthode GSEA (Gene Set Enrichment Analysis) et une analyse d’interactions entre gènes au sein des pathways associés au mélanome. Ces analyses ont été menées dans deux études : l’étude française MELARISK et l’étude américaine du MD Anderson Cancer Center (MDACC), totalisant 2 980 cas et 3 823 témoins. Nous avons identifié une interaction entre les gènes, TERF1 et AFAP1L2, pour le risque de mélanome et une interaction entre les gènes, CDC42 et SCIN, pour l’indice de Breslow. Ces gènes sont particulièrement pertinents sur le plan biologique du fait de leur rôle dans la biologie des télomères pour la première paire de gènes et dans la dynamique des filaments d’actine pour la seconde paire. Afin d’identifier les variants potentiellement fonctionnels au sein des régions du génome mises en évidence par études pangénomiques, nous avons proposé une stratégie de cartographie fine qui repose principalement sur une méthode de régression pénalisée (méthode HyperLasso) appliquée à tous les variants de la région étudiée. Par l’analyse de la région 16q24 qui contient le gène MC1R dont les variants fonctionnels sont connus, nous avons montré que cette stratégie était capable d’identifier ces variants parmi de nombreux variants associés au mélanome dans cette région. Nous avons contribué à identifier cinq nouvelles régions du génome associées au mélanome par méta-analyse d’études pangénomiques réalisées au niveau mondial (43 000 sujets) puis mené une étude de cartographie fine de toutes les régions associées au mélanome, en se basant sur la stratégie proposée et validée dans la région 16q24. Les stratégies d’analyses multi-marqueurs proposées dans le cadre de ce travail de thèse ont permis d’identifier de nouveaux gènes associés au risque de mélanome et à un facteur pronostique de ce cancer et de caractériser les variants génétiques potentiellement fonctionnels au sein des régions du génome identifiées par études pangénomiques. / Cutaneous melanoma is a skin cancer developed from melanocytes. It is the 11th most common cancers in France. Mortality due to melanoma remains high when diagnosed at a late stage. This cancer results from many genetic, environmental factors and interactions between these factors. The genetic susceptibility to melanoma covers a broad spectrum of genetic variation, from rare mutations conferring high risk to common variants conferring low risk. My thesis was conducted in the framework of low-risk variants associated with melanoma occurrence and prognosis. To date, genome-wide association studies (GWAS) of melanoma have identified common variants with relatively modest effects which only explain a part of the genetic component of this cancer. Functional variants at the identified loci are mostly unknown. GWASs have been mainly conducted using single-marker analysis which may be underpowered to detect variants with small effect or interacting with each other. The main objective of this thesis was to propose multi-marker analysis strategies to identify novel genes involved in melanoma and to characterize potentially functional variants in chromosomal regions found associated with melanoma. To identify new genes associated with melanoma risk and a prognostic factor for this cancer (Breslow thickness), we proposed a multi-marker analysis strategy which integrates pathway analysis based on the GSEA (Gene Set Enrichment Analysis) method and gene-gene interaction analysis within melanoma-associated pathways. These analyses were conducted in two studies: the French MELARISK study and the North-American MD Anderson Cancer Center (MDACC) study, with a total of 2,980 cases and 3,823 controls. We identified gene-gene interactions between TERF1 and AFAP1L2 genes for melanoma risk and between CDC42 and SCIN genes for Breslow thickness. These genes are biologically relevant because of their role in telomere biology for the former gene pair and in actin dynamics for the latter pair. To identify potentially functional variants at loci identified by GWAS, we proposed a fine mapping strategy which is mainly based on a penalized regression approach (HyperLasso method) that can be applied to all variants of the region under study. By studying the 16q24 region which harbors the MC1R gene whose functional variants are known, we showed this strategy was able to identify those variants among many variants associated with melanoma in this region. We contributed to the identification of five novel regions associated with melanoma through a worldwide meta-analysis of melanoma GWASs (43,000 subjects) and conducted fine mapping of all melanoma-associated loci using the strategy we proposed and validated in the 16q24 region. The multi-marker strategies proposed in this work have allowed identifying new biologically relevant genes associated with risk of melanoma and a major melanoma prognostic factor and characterizing potentially functional genetic variants within regions identified by GWAS.
228

Impact of pre-imputation SNP-filtering on genotype imputation results

Roshyara, Nab Raj, Kirsten, Holger, Horn, Katrin, Ahnert, Peter, Scholz, Markus January 2014 (has links)
Background: Imputation of partially missing or unobserved genotypes is an indispensable tool for SNP data analyses. However, research and understanding of the impact of initial SNP-data quality control on imputation results is still limited. In this paper, we aim to evaluate the effect of different strategies of pre-imputation quality filtering on the performance of the widely used imputation algorithms MaCH and IMPUTE. Results: We considered three scenarios: imputation of partially missing genotypes with usage of an external reference panel, without usage of an external reference panel, as well as imputation of ompletely un-typed SNPs using an external reference panel. We first created various datasets applying different SNP quality filters and masking certain percentages of randomly selected high-quality SNPs. We imputed these SNPs and compared the results between the different filtering scenarios by using established and newly proposed measures of imputation quality. While the established measures assess certainty of imputation results, our newly proposed measures focus on the agreement with true genotypes. These measures showed that pre-imputation SNP-filtering might be detrimental regarding imputation quality. Moreover, the strongest drivers of imputation quality were in general the burden of missingness and the number of SNPs used for imputation. We also found that using a reference panel always improves imputation quality of partially missing genotypes. MaCH performed slightly better than IMPUTE2 in most of our scenarios. Again, these results were more pronounced when using our newly defined measures of imputation quality. Conclusion: Even a moderate filtering has a detrimental effect on the imputation quality. Therefore little or no SNP filtering prior to imputation appears to be the best strategy for imputing small to moderately sized datasets. Our results also showed that for these datasets, MaCH performs slightly better than IMPUTE2 in most scenarios at the cost of increased computing time.
229

Genes Associated with Alcohol Withdrawal

Wang, Kesheng, Wang, Liang 01 January 2016 (has links)
Worldwide, alcohol is the third leading risk factor for disease burden, while its harmful use leads to 2.5 million deaths every year. Alcohol dependence (AD) is a complex disease, with devastating effects on individuals, families, and society. It is estimated that 76.3 million people worldwide have suffered from alcohol use disorders (AUD), including alcohol abuse and AD. Alcohol withdrawal or alcohol withdrawal symptom (AWS) refers to a cluster of symptoms that may occur when a heavy drinker suddenly stops or significantly reduces their alcohol intake. These symptoms can start as early as 2 h after the last drink, persist for weeks, and range from mild anxiety and shakiness to severe complications, such as seizures and delirium tremens. Family, twin, and adoption studies have indicated that genetic and environmental factors and their interactions contribute to the development of AD and related phenotypes, with a heritability coefficient of more than 0.5 for AD. Whole-genome linkage and candidate gene association studies have successfully identified several chromosome regions and genes that are related to AD and AWS. Furthermore, gene expression analysis, epigenetic studies, and genome-wide association studies (GWAS) have provided regions and loci for AWS. This chapter reviews the recent findings in genetic studies of AWS.
230

From Variants to Pathways: Interrogating the Genetic Architecture of Age-Related Macular Degeneration

Waksmunski, Andrea Rose 02 June 2020 (has links)
No description available.

Page generated in 0.1072 seconds