Spelling suggestions: "subject:"geometric aptimization"" "subject:"geometric anoptimization""
11 |
Aplicação do método Design Construtal na avaliação numérica da potência hidropneumática de um dispositivo coluna de água oscilante com região de transição trapezoidal ou semicircular e estudo da influência da turbina no formato elípticoLima, Yuri Theodoro Barbosa de January 2016 (has links)
A conversão da energia das ondas dos oceanos em energia elétrica é uma alternativa para o problema da falta de combustíveis fósseis. Uma das possibilidades de aproveitamento é através de dispositivos cujo princípio de funcionamento é o de Coluna de Água Oscilante (CAO). No presente trabalho o objetivo é, através da modelagem computacional e do emprego do Design Construtal, maximizar a potência hidropneumática de um dispositivo conversor de energia das ondas do mar do tipo CAO. São analisados diferentes eixos da restrição física, no formato elíptico, que representa a turbina, e duas formas geométricas na região de transição entre a câmara hidropneumática e a chaminé do dispositivo CAO: trapezoidal e semicircular. Considerando um domínio bidimensional, as restrições para estes problemas são: Área da restrição elíptica (AR), Área total do dispositivo (AT) e razão entre a área da restrição elíptica e a área total (ϕn). Os graus de liberdade analisados são: a razão entre os comprimentos dos eixos da restrição elíptica (d1/d2) para o caso da restrição física da turbina, o ângulo de inclinação da parede (α) para o caso com região de transição trapezoidal, o raio (r) e H2/l (razão entre altura e comprimento da chaminé de saída da câmara CAO) para o caso com região de transição semicircular. Para a solução numérica é empregado um código de dinâmica dos fluidos computacional, FLUENT®, baseado no Método de Volumes Finitos (MVF). O modelo multifásico Volume of Fluid (VOF) é aplicado no tratamento da interação água-ar. O domínio computacional é representado por um tanque de ondas com um dispositivo CAO acoplado. Os resultados obtidos indicam que, para o estudo da região de transição trapezoidal o desempenho do conversor tem aproximadamente o mesmo desempenho para todas as geometrias estudadas. A região de transição semicircular, apresenta resultados para os quais foi possível otimizar a potência hidropneumática. O estudo da turbina indica que foi possível determinar uma geometria capaz de converter a energia da onda incidente ao dispositivo, sem que ocorresse a obstrução do escoamento de ar na chaminé do dispositivo CAO. Assim, mostra-se a relação entre o método Design Construtal e o clima de ondas na definição das dimensões que maximizam a potência hidropneumática. / The conversion of ocean’s wave energy into electrical energy is an alternative for the scarcity of fossil fuels. One of the possibilities of energy use is through devices, whose operating principle is the Oscillating Water Column (OWC). In this work the aim is, through computer modeling and the Constructal Design, to maximize hydropneumatic power of a power converter device type OWC. Different axes of physical constraint with elliptical shape, representing the effect of the turbine , are analyzed. Two geometric shapes in the transition region between the hydropneumatic chamber and the chimney OWC device, trapezoidal and semicircular, are also analyzed. Considering a two-dimensional domain the restrictions for this problem are: Elliptical restriction area (AR), Total area device (AT) and the ratio between the area of the elliptical restraint and the total area (ϕn). The considered degrees of freedom are: the ratio between the lengths of the axes (d1/d2) of the elliptical restraint, for the turbine’s physical constraint case, the inclination angle (α) of the wall for the trapezoidal transition case, and the radius (r) and H2/l (ratio between height and length of output chimney CAO) for the semicircular transition region case. For the numerical solution, a commercial code of computational fluid dynamics, FLUENT®, which is based on the Finite Volume Method (FVM), is employed. The multiphase model Volume of Fluid (VOF) is applied in the treatment of water-air interaction. The computational domain is represented by a wave tank with a fixed OWC device. The obtained results indicate that, for the study of the trapezoidal transition region, the performance of converter don’t seems to be compensatory only by changing the geometry of the trapezoidal area. However, for the semicircular transition region, it was possible to optimize a hydropneumatic power. The study of turbine effect indicates a geometry capable of converting the energy of the incident wave to the device, without obstructing the air flow in the chimney of de OWC, showing the relationship between the Constructal Design method and the wave climate in the definition of the dimensions that maximize the hydropneumatic power.
|
12 |
Design Construtal aplicado a escoamentos de fluidos viscoplásticos sobre dutos de seção elípticaHermany, Lober January 2016 (has links)
O presente trabalho destina-se ao estudo numérico da geometria de tubos de seção elíptica que facilite a transferência de calor adimensional e diminua a queda de pressão adimensional (Δ̃) sofrida pelo escoamento. O método aplicado é o Design Construtal, que visa determinar a geometria que apresentará a menor resistência ao escoamento, ou seja, busca-se determinar a razão de aspecto da elipse (=⁄) que favorece a transferência de calor e diminui a queda de pressão do escoamento. O fluido empregado neste estudo apresenta características de viscoplasticidade. A relação entre a tensão cisalhante e a taxa de deformação obedece ao modelo de Herschel-Bulkley modificado. Considera-se que o escoamento é incompressível, laminar, bidimensional, externo e ocorre em regime permanente. A solução numérica do problema proposto é realizada com um código comercial baseado no método dos volumes finitos. É investigada a influência do índice de potência, , sobre a seção elíptica que facilita o escoamento e, para isso, este índice é variado de 0,4 a 1. A influência dos números de Reynolds (√), Herschel-Bulkley (√) e Prandtl (√) sobre o comportamento do escoamento também é avaliada. √ é variado de 1 a 40, √ é variado de 1 a 100 e √ é variado de 0,1 a 100 Os resultados mostram que, para um escoamento com √=1, √=1 e √=1, o aumento do índice de potência influencia negativamente na transferência de calor adimensional e a seção elíptica, que maximiza esta transferência de calor adimensional, tende a ser mais alongada na direção do escoamento. Já e influenciam positivamente na transferência de calor adimensional. Para um escoamento com √=1, √=1, =0,4 conclui-se que com o aumento de a razão de aspecto ótima (q,opt), do ponto de vista térmico, diminui. Quando é considerado um escoamento com √=1, √=1, =0,4 conclui-se que q,opt diminui com o aumento de , ou seja, a elipse torna-se mais alongada no sentido do escoamento. A variação de √ em um escoamento com √=1, √=1, =0,4 mostra que o aumento deste parâmetro acarreta em aumento da taxa de transferência adimensional e de Δ̃. / The present work is aimed at the numerical study of the geometry of elliptic section tubes that facilitates the dimensionless heat transfer and decreases the dimensionless pressure drop (Δ̃) suffered by the flow. The applied method is the Construtal Design, which aims to determine the geometry that will present the least resistance to the flow, that is, to determine the aspect ratio of the ellipse (=⁄) that favors heat transfer and decreases the flow pressure drop. The fluid used in this study has viscoplasticity characteristics. The relationship between shear stress and strain rate follows the modified Herschel-Bulkley model. It is considered that the flow is incompressible, laminar, two-dimensional, external and occurs in steady state. The numerical solution of the proposed problem is carried out with a commercial code based on the finite volume method. The influence of the power index, n, on the elliptical section facilitating the flow is investigated, and for this, the index is varied from 0.4 to 1. The influence of the Reynolds number (√), Herschel-Bulkley number (√) and Prandtl number (√) on the flow behavior is also evaluated √ is varied from 1 to 40, √ is varied from 1 to 100 and √ is varied from 0.1 to 100. The results show that for a flow with √=1, √=1 and √=1, the increase of the power index negatively influences the dimensionless heat transfer and the elliptic section, which maximizes this dimensionless heat transfer, tends to be more elongated in the direction of flow. Already √ and √ influence positively the dimensionless heat transfer. For a flow with √=1, √=1, =0.4 it is concluded that with the increase of √ the optimum aspect ratio (q,opt), from the thermal point of view, decreases. When a flow is considered with √=1, √=1, =0.4 it is concluded that q,opt decreases with the increase of √, that is, ellipse becomes more elongated in the flow direction. The variation of √ in a flow with √=1, √=1, =0.4 shows that the increase of this parameter causes an increase of the dimensionless transfer rate and Δ̃.
|
13 |
Estudo numérico tridimensional de um dispositivo de galgamento para conversão de energia das ondas do mar em energia elétrica aplicando o método Constructal DesignMachado, Bianca Neves January 2016 (has links)
O princípio operacional do dispositivo de galgamento consiste de uma estrutura que utiliza uma rampa para direcionar as ondas incidentes para o reservatório. A água armazenada retorna para o oceano após a passagem por uma turbina que está acoplada a um gerador de energia elétrica. O presente trabalho propõe dois estudos numéricos a respeito de um conversor de energia das ondas do mar do tipo galgamento. Para ambos os casos, o objetivo do estudo é a aplicação do método Design Construtal na definição da melhor forma para a rampa de modo a maximizar a massa de água que entra no reservatório, conduzindo a uma maior geração de energia elétrica. O grau de liberdade b/B, isto é, a razão entre a base superior e a base inferior da rampa trapezoidal, foi otimizado, mantendo-se fixos a área total do tanque de ondas, a área da rampa e as características da onda. Para a análise numérica do princípio de funcionamento deste dispositivo foi empregado um domínio computacional tridimensional (3D), gerado através do software GAMBIT, onde o conversor é acoplado a um tanque de ondas regulares. A solução das equações de conservação e a equação do transporte da fração volumétrica foi realizada com o código comercial de Dinâmica dos Fluidos Computacional FLUENT, que é baseado no Método de Volumes Finitos (MVF). Aplica-se o modelo multifásico Volume of Fluid (VOF) no tratamento da interação água-ar. Para o primeiro estudo, as características da onda regular empregada estavam em escala de laboratório. Os resultados mostraram que houve uma razão ótima (b/B)o = 0.43, que maximiza a quantidade de água que entra no reservatório para o caso estudado. Para ambos os casos, a razão ótima foi encontrada para o extremo inferior do grau de liberdade, além dos resultados apontarem um aumento significativo na massa admitida no reservatório e, por consequente, um maior aproveitamento das ondas incidentes. / The operational principle of an overtopping device consists of a structure which utilizes a ramp to direct incident waves to the reservoir. The stored water returns to the ocean after passing through a turbine that is coupled to an electric generator. This work proposes two numerical studies of a WEC of sea waves of the type overtopping. In both cases, the objective of the study is the application of Constructal Design method to define the best geometry of the ramp which maximizes the mass of water entering the reservoir, leading to increase the generation of electricity. The degree of freedom b/B, that is, the ratio between the upper base and the lower base of the trapezoidal ramp, has been optimized, keeping fixed the total area of the wave tank, the area of the ramp and the wave characteristics. For the numerical analysis of the working principle of this device it was used a three-dimensional computational domain (3D) generated by GAMBIT software where the device is inserted to a tank of regular waves. The solution of conservation equations and equation of transport of the volumetric fraction was carried out with the Commercial Code of Computational Fluid Dynamics FLUENT, which is based on Finite Volume Method (FVM). It was applied the multiphase model Volume of Fluid (VOF) in the treatment of the interaction water-air. For the first study, the characteristics of the employed regular wave were on a laboratory scale. The results showed that there were an optimal ratio (b/B)o = 0.43, which maximizes the amount of water entering the reservoir for the case study. For the second study, the characteristics of the regular wave were employed at actual scale and the results showed that there was an optimum ratio (b/B)o = 0.38, which maximizes the amount of water entering the reservoir for the case study. In both cases, the optimum ratio is found for the extreme lower of freedom of degree and the results showed a significant increase in the mass allowed in the reservoir and, consequently, larger use of the incident waves.
|
14 |
Aplicação do método Design Construtal na avaliação numérica da potência hidropneumática de um dispositivo coluna de água oscilante com região de transição trapezoidal ou semicircular e estudo da influência da turbina no formato elípticoLima, Yuri Theodoro Barbosa de January 2016 (has links)
A conversão da energia das ondas dos oceanos em energia elétrica é uma alternativa para o problema da falta de combustíveis fósseis. Uma das possibilidades de aproveitamento é através de dispositivos cujo princípio de funcionamento é o de Coluna de Água Oscilante (CAO). No presente trabalho o objetivo é, através da modelagem computacional e do emprego do Design Construtal, maximizar a potência hidropneumática de um dispositivo conversor de energia das ondas do mar do tipo CAO. São analisados diferentes eixos da restrição física, no formato elíptico, que representa a turbina, e duas formas geométricas na região de transição entre a câmara hidropneumática e a chaminé do dispositivo CAO: trapezoidal e semicircular. Considerando um domínio bidimensional, as restrições para estes problemas são: Área da restrição elíptica (AR), Área total do dispositivo (AT) e razão entre a área da restrição elíptica e a área total (ϕn). Os graus de liberdade analisados são: a razão entre os comprimentos dos eixos da restrição elíptica (d1/d2) para o caso da restrição física da turbina, o ângulo de inclinação da parede (α) para o caso com região de transição trapezoidal, o raio (r) e H2/l (razão entre altura e comprimento da chaminé de saída da câmara CAO) para o caso com região de transição semicircular. Para a solução numérica é empregado um código de dinâmica dos fluidos computacional, FLUENT®, baseado no Método de Volumes Finitos (MVF). O modelo multifásico Volume of Fluid (VOF) é aplicado no tratamento da interação água-ar. O domínio computacional é representado por um tanque de ondas com um dispositivo CAO acoplado. Os resultados obtidos indicam que, para o estudo da região de transição trapezoidal o desempenho do conversor tem aproximadamente o mesmo desempenho para todas as geometrias estudadas. A região de transição semicircular, apresenta resultados para os quais foi possível otimizar a potência hidropneumática. O estudo da turbina indica que foi possível determinar uma geometria capaz de converter a energia da onda incidente ao dispositivo, sem que ocorresse a obstrução do escoamento de ar na chaminé do dispositivo CAO. Assim, mostra-se a relação entre o método Design Construtal e o clima de ondas na definição das dimensões que maximizam a potência hidropneumática. / The conversion of ocean’s wave energy into electrical energy is an alternative for the scarcity of fossil fuels. One of the possibilities of energy use is through devices, whose operating principle is the Oscillating Water Column (OWC). In this work the aim is, through computer modeling and the Constructal Design, to maximize hydropneumatic power of a power converter device type OWC. Different axes of physical constraint with elliptical shape, representing the effect of the turbine , are analyzed. Two geometric shapes in the transition region between the hydropneumatic chamber and the chimney OWC device, trapezoidal and semicircular, are also analyzed. Considering a two-dimensional domain the restrictions for this problem are: Elliptical restriction area (AR), Total area device (AT) and the ratio between the area of the elliptical restraint and the total area (ϕn). The considered degrees of freedom are: the ratio between the lengths of the axes (d1/d2) of the elliptical restraint, for the turbine’s physical constraint case, the inclination angle (α) of the wall for the trapezoidal transition case, and the radius (r) and H2/l (ratio between height and length of output chimney CAO) for the semicircular transition region case. For the numerical solution, a commercial code of computational fluid dynamics, FLUENT®, which is based on the Finite Volume Method (FVM), is employed. The multiphase model Volume of Fluid (VOF) is applied in the treatment of water-air interaction. The computational domain is represented by a wave tank with a fixed OWC device. The obtained results indicate that, for the study of the trapezoidal transition region, the performance of converter don’t seems to be compensatory only by changing the geometry of the trapezoidal area. However, for the semicircular transition region, it was possible to optimize a hydropneumatic power. The study of turbine effect indicates a geometry capable of converting the energy of the incident wave to the device, without obstructing the air flow in the chimney of de OWC, showing the relationship between the Constructal Design method and the wave climate in the definition of the dimensions that maximize the hydropneumatic power.
|
15 |
Estudo numérico tridimensional de um dispositivo de galgamento para conversão de energia das ondas do mar em energia elétrica aplicando o método Constructal DesignMachado, Bianca Neves January 2016 (has links)
O princípio operacional do dispositivo de galgamento consiste de uma estrutura que utiliza uma rampa para direcionar as ondas incidentes para o reservatório. A água armazenada retorna para o oceano após a passagem por uma turbina que está acoplada a um gerador de energia elétrica. O presente trabalho propõe dois estudos numéricos a respeito de um conversor de energia das ondas do mar do tipo galgamento. Para ambos os casos, o objetivo do estudo é a aplicação do método Design Construtal na definição da melhor forma para a rampa de modo a maximizar a massa de água que entra no reservatório, conduzindo a uma maior geração de energia elétrica. O grau de liberdade b/B, isto é, a razão entre a base superior e a base inferior da rampa trapezoidal, foi otimizado, mantendo-se fixos a área total do tanque de ondas, a área da rampa e as características da onda. Para a análise numérica do princípio de funcionamento deste dispositivo foi empregado um domínio computacional tridimensional (3D), gerado através do software GAMBIT, onde o conversor é acoplado a um tanque de ondas regulares. A solução das equações de conservação e a equação do transporte da fração volumétrica foi realizada com o código comercial de Dinâmica dos Fluidos Computacional FLUENT, que é baseado no Método de Volumes Finitos (MVF). Aplica-se o modelo multifásico Volume of Fluid (VOF) no tratamento da interação água-ar. Para o primeiro estudo, as características da onda regular empregada estavam em escala de laboratório. Os resultados mostraram que houve uma razão ótima (b/B)o = 0.43, que maximiza a quantidade de água que entra no reservatório para o caso estudado. Para ambos os casos, a razão ótima foi encontrada para o extremo inferior do grau de liberdade, além dos resultados apontarem um aumento significativo na massa admitida no reservatório e, por consequente, um maior aproveitamento das ondas incidentes. / The operational principle of an overtopping device consists of a structure which utilizes a ramp to direct incident waves to the reservoir. The stored water returns to the ocean after passing through a turbine that is coupled to an electric generator. This work proposes two numerical studies of a WEC of sea waves of the type overtopping. In both cases, the objective of the study is the application of Constructal Design method to define the best geometry of the ramp which maximizes the mass of water entering the reservoir, leading to increase the generation of electricity. The degree of freedom b/B, that is, the ratio between the upper base and the lower base of the trapezoidal ramp, has been optimized, keeping fixed the total area of the wave tank, the area of the ramp and the wave characteristics. For the numerical analysis of the working principle of this device it was used a three-dimensional computational domain (3D) generated by GAMBIT software where the device is inserted to a tank of regular waves. The solution of conservation equations and equation of transport of the volumetric fraction was carried out with the Commercial Code of Computational Fluid Dynamics FLUENT, which is based on Finite Volume Method (FVM). It was applied the multiphase model Volume of Fluid (VOF) in the treatment of the interaction water-air. For the first study, the characteristics of the employed regular wave were on a laboratory scale. The results showed that there were an optimal ratio (b/B)o = 0.43, which maximizes the amount of water entering the reservoir for the case study. For the second study, the characteristics of the regular wave were employed at actual scale and the results showed that there was an optimum ratio (b/B)o = 0.38, which maximizes the amount of water entering the reservoir for the case study. In both cases, the optimum ratio is found for the extreme lower of freedom of degree and the results showed a significant increase in the mass allowed in the reservoir and, consequently, larger use of the incident waves.
|
16 |
Design Construtal aplicado a escoamentos de fluidos viscoplásticos sobre dutos de seção elípticaHermany, Lober January 2016 (has links)
O presente trabalho destina-se ao estudo numérico da geometria de tubos de seção elíptica que facilite a transferência de calor adimensional e diminua a queda de pressão adimensional (Δ̃) sofrida pelo escoamento. O método aplicado é o Design Construtal, que visa determinar a geometria que apresentará a menor resistência ao escoamento, ou seja, busca-se determinar a razão de aspecto da elipse (=⁄) que favorece a transferência de calor e diminui a queda de pressão do escoamento. O fluido empregado neste estudo apresenta características de viscoplasticidade. A relação entre a tensão cisalhante e a taxa de deformação obedece ao modelo de Herschel-Bulkley modificado. Considera-se que o escoamento é incompressível, laminar, bidimensional, externo e ocorre em regime permanente. A solução numérica do problema proposto é realizada com um código comercial baseado no método dos volumes finitos. É investigada a influência do índice de potência, , sobre a seção elíptica que facilita o escoamento e, para isso, este índice é variado de 0,4 a 1. A influência dos números de Reynolds (√), Herschel-Bulkley (√) e Prandtl (√) sobre o comportamento do escoamento também é avaliada. √ é variado de 1 a 40, √ é variado de 1 a 100 e √ é variado de 0,1 a 100 Os resultados mostram que, para um escoamento com √=1, √=1 e √=1, o aumento do índice de potência influencia negativamente na transferência de calor adimensional e a seção elíptica, que maximiza esta transferência de calor adimensional, tende a ser mais alongada na direção do escoamento. Já e influenciam positivamente na transferência de calor adimensional. Para um escoamento com √=1, √=1, =0,4 conclui-se que com o aumento de a razão de aspecto ótima (q,opt), do ponto de vista térmico, diminui. Quando é considerado um escoamento com √=1, √=1, =0,4 conclui-se que q,opt diminui com o aumento de , ou seja, a elipse torna-se mais alongada no sentido do escoamento. A variação de √ em um escoamento com √=1, √=1, =0,4 mostra que o aumento deste parâmetro acarreta em aumento da taxa de transferência adimensional e de Δ̃. / The present work is aimed at the numerical study of the geometry of elliptic section tubes that facilitates the dimensionless heat transfer and decreases the dimensionless pressure drop (Δ̃) suffered by the flow. The applied method is the Construtal Design, which aims to determine the geometry that will present the least resistance to the flow, that is, to determine the aspect ratio of the ellipse (=⁄) that favors heat transfer and decreases the flow pressure drop. The fluid used in this study has viscoplasticity characteristics. The relationship between shear stress and strain rate follows the modified Herschel-Bulkley model. It is considered that the flow is incompressible, laminar, two-dimensional, external and occurs in steady state. The numerical solution of the proposed problem is carried out with a commercial code based on the finite volume method. The influence of the power index, n, on the elliptical section facilitating the flow is investigated, and for this, the index is varied from 0.4 to 1. The influence of the Reynolds number (√), Herschel-Bulkley number (√) and Prandtl number (√) on the flow behavior is also evaluated √ is varied from 1 to 40, √ is varied from 1 to 100 and √ is varied from 0.1 to 100. The results show that for a flow with √=1, √=1 and √=1, the increase of the power index negatively influences the dimensionless heat transfer and the elliptic section, which maximizes this dimensionless heat transfer, tends to be more elongated in the direction of flow. Already √ and √ influence positively the dimensionless heat transfer. For a flow with √=1, √=1, =0.4 it is concluded that with the increase of √ the optimum aspect ratio (q,opt), from the thermal point of view, decreases. When a flow is considered with √=1, √=1, =0.4 it is concluded that q,opt decreases with the increase of √, that is, ellipse becomes more elongated in the flow direction. The variation of √ in a flow with √=1, √=1, =0.4 shows that the increase of this parameter causes an increase of the dimensionless transfer rate and Δ̃.
|
17 |
[en] A QUADRATIC OPTIMIZATION APPROACH FOR THE RESERVOIR GEOMECHANICAL MESH GENERATION / [pt] UMA METODOLOGIA BASEADA EM OTIMIZAÇÃO QUADRÁTICA PARA GERAÇÃO DE MALHAS GEOMECÂNICAS DE RESERVATÓRIOSJEFERSON ROMULO PEREIRA COELHO 31 July 2018 (has links)
[pt] A geração de malhas geomecânicas de reservatórios ainda é uma tarefa tediosa que consome muito tempo. Para acelerar este processo, soluções que reconstroem analiticamente a geometria do reservatório têm sido propostas, mas essas soluções não são as mais adequadas para modelagem de objetos naturais. Este trabalho propõe uma modelagem discreta para a geometria do reservatório, onde os vértices da malha são posicionados por meio da solução de um problema de otimização quadrático e convexo. O problema de otimização é modelado de forma a garantir que as malhas geomecânicas de saída sejam suaves e que ao mesmo tempo respeitem as restrições do reservatório e dos horizontes presentes. Além disso, a metodologia proposta permite uma implementação eficiente, paralelizável e de baixo consumo de memória. Casos de teste com milhões de variáveis são apresentados para validar essa abordagem. Finalmente, a metodologia proposta neste trabalho para malhas de geomecânica pode ser naturalmente estendida para a modelagem estrutural de sub-superfícies na interpretação sísmica e de restauração geológica. / [en] Geomechanical mesh generation of complex reservoirs remains a tedious task prone to errors. Recently proposed solutions based on analytical reconstruction of the sub-surfaces are not capable to represent all the geometric details of natural objects. This work proposes a discrete model where the mesh vertices are positioned based on a convex quadratic optimization process. The optimization problem seeks to guarantee smooth meshes that conform with prescribed constraints. The resulting mesh therefore respects, as far as
possible, the finite volume mesh of the reservoir pay zone and the existing horizons. Finally, the proposed methodology for Geomechanical meshes can be easily extend to model sub-surfaces present in the structural interpretation and geological restauration.
|
18 |
Estudo numérico tridimensional de um dispositivo de galgamento para conversão de energia das ondas do mar em energia elétrica aplicando o método Constructal DesignMachado, Bianca Neves January 2016 (has links)
O princípio operacional do dispositivo de galgamento consiste de uma estrutura que utiliza uma rampa para direcionar as ondas incidentes para o reservatório. A água armazenada retorna para o oceano após a passagem por uma turbina que está acoplada a um gerador de energia elétrica. O presente trabalho propõe dois estudos numéricos a respeito de um conversor de energia das ondas do mar do tipo galgamento. Para ambos os casos, o objetivo do estudo é a aplicação do método Design Construtal na definição da melhor forma para a rampa de modo a maximizar a massa de água que entra no reservatório, conduzindo a uma maior geração de energia elétrica. O grau de liberdade b/B, isto é, a razão entre a base superior e a base inferior da rampa trapezoidal, foi otimizado, mantendo-se fixos a área total do tanque de ondas, a área da rampa e as características da onda. Para a análise numérica do princípio de funcionamento deste dispositivo foi empregado um domínio computacional tridimensional (3D), gerado através do software GAMBIT, onde o conversor é acoplado a um tanque de ondas regulares. A solução das equações de conservação e a equação do transporte da fração volumétrica foi realizada com o código comercial de Dinâmica dos Fluidos Computacional FLUENT, que é baseado no Método de Volumes Finitos (MVF). Aplica-se o modelo multifásico Volume of Fluid (VOF) no tratamento da interação água-ar. Para o primeiro estudo, as características da onda regular empregada estavam em escala de laboratório. Os resultados mostraram que houve uma razão ótima (b/B)o = 0.43, que maximiza a quantidade de água que entra no reservatório para o caso estudado. Para ambos os casos, a razão ótima foi encontrada para o extremo inferior do grau de liberdade, além dos resultados apontarem um aumento significativo na massa admitida no reservatório e, por consequente, um maior aproveitamento das ondas incidentes. / The operational principle of an overtopping device consists of a structure which utilizes a ramp to direct incident waves to the reservoir. The stored water returns to the ocean after passing through a turbine that is coupled to an electric generator. This work proposes two numerical studies of a WEC of sea waves of the type overtopping. In both cases, the objective of the study is the application of Constructal Design method to define the best geometry of the ramp which maximizes the mass of water entering the reservoir, leading to increase the generation of electricity. The degree of freedom b/B, that is, the ratio between the upper base and the lower base of the trapezoidal ramp, has been optimized, keeping fixed the total area of the wave tank, the area of the ramp and the wave characteristics. For the numerical analysis of the working principle of this device it was used a three-dimensional computational domain (3D) generated by GAMBIT software where the device is inserted to a tank of regular waves. The solution of conservation equations and equation of transport of the volumetric fraction was carried out with the Commercial Code of Computational Fluid Dynamics FLUENT, which is based on Finite Volume Method (FVM). It was applied the multiphase model Volume of Fluid (VOF) in the treatment of the interaction water-air. For the first study, the characteristics of the employed regular wave were on a laboratory scale. The results showed that there were an optimal ratio (b/B)o = 0.43, which maximizes the amount of water entering the reservoir for the case study. For the second study, the characteristics of the regular wave were employed at actual scale and the results showed that there was an optimum ratio (b/B)o = 0.38, which maximizes the amount of water entering the reservoir for the case study. In both cases, the optimum ratio is found for the extreme lower of freedom of degree and the results showed a significant increase in the mass allowed in the reservoir and, consequently, larger use of the incident waves.
|
19 |
Aplicação do método Design Construtal na avaliação numérica da potência hidropneumática de um dispositivo coluna de água oscilante com região de transição trapezoidal ou semicircular e estudo da influência da turbina no formato elípticoLima, Yuri Theodoro Barbosa de January 2016 (has links)
A conversão da energia das ondas dos oceanos em energia elétrica é uma alternativa para o problema da falta de combustíveis fósseis. Uma das possibilidades de aproveitamento é através de dispositivos cujo princípio de funcionamento é o de Coluna de Água Oscilante (CAO). No presente trabalho o objetivo é, através da modelagem computacional e do emprego do Design Construtal, maximizar a potência hidropneumática de um dispositivo conversor de energia das ondas do mar do tipo CAO. São analisados diferentes eixos da restrição física, no formato elíptico, que representa a turbina, e duas formas geométricas na região de transição entre a câmara hidropneumática e a chaminé do dispositivo CAO: trapezoidal e semicircular. Considerando um domínio bidimensional, as restrições para estes problemas são: Área da restrição elíptica (AR), Área total do dispositivo (AT) e razão entre a área da restrição elíptica e a área total (ϕn). Os graus de liberdade analisados são: a razão entre os comprimentos dos eixos da restrição elíptica (d1/d2) para o caso da restrição física da turbina, o ângulo de inclinação da parede (α) para o caso com região de transição trapezoidal, o raio (r) e H2/l (razão entre altura e comprimento da chaminé de saída da câmara CAO) para o caso com região de transição semicircular. Para a solução numérica é empregado um código de dinâmica dos fluidos computacional, FLUENT®, baseado no Método de Volumes Finitos (MVF). O modelo multifásico Volume of Fluid (VOF) é aplicado no tratamento da interação água-ar. O domínio computacional é representado por um tanque de ondas com um dispositivo CAO acoplado. Os resultados obtidos indicam que, para o estudo da região de transição trapezoidal o desempenho do conversor tem aproximadamente o mesmo desempenho para todas as geometrias estudadas. A região de transição semicircular, apresenta resultados para os quais foi possível otimizar a potência hidropneumática. O estudo da turbina indica que foi possível determinar uma geometria capaz de converter a energia da onda incidente ao dispositivo, sem que ocorresse a obstrução do escoamento de ar na chaminé do dispositivo CAO. Assim, mostra-se a relação entre o método Design Construtal e o clima de ondas na definição das dimensões que maximizam a potência hidropneumática. / The conversion of ocean’s wave energy into electrical energy is an alternative for the scarcity of fossil fuels. One of the possibilities of energy use is through devices, whose operating principle is the Oscillating Water Column (OWC). In this work the aim is, through computer modeling and the Constructal Design, to maximize hydropneumatic power of a power converter device type OWC. Different axes of physical constraint with elliptical shape, representing the effect of the turbine , are analyzed. Two geometric shapes in the transition region between the hydropneumatic chamber and the chimney OWC device, trapezoidal and semicircular, are also analyzed. Considering a two-dimensional domain the restrictions for this problem are: Elliptical restriction area (AR), Total area device (AT) and the ratio between the area of the elliptical restraint and the total area (ϕn). The considered degrees of freedom are: the ratio between the lengths of the axes (d1/d2) of the elliptical restraint, for the turbine’s physical constraint case, the inclination angle (α) of the wall for the trapezoidal transition case, and the radius (r) and H2/l (ratio between height and length of output chimney CAO) for the semicircular transition region case. For the numerical solution, a commercial code of computational fluid dynamics, FLUENT®, which is based on the Finite Volume Method (FVM), is employed. The multiphase model Volume of Fluid (VOF) is applied in the treatment of water-air interaction. The computational domain is represented by a wave tank with a fixed OWC device. The obtained results indicate that, for the study of the trapezoidal transition region, the performance of converter don’t seems to be compensatory only by changing the geometry of the trapezoidal area. However, for the semicircular transition region, it was possible to optimize a hydropneumatic power. The study of turbine effect indicates a geometry capable of converting the energy of the incident wave to the device, without obstructing the air flow in the chimney of de OWC, showing the relationship between the Constructal Design method and the wave climate in the definition of the dimensions that maximize the hydropneumatic power.
|
20 |
Design Construtal aplicado a escoamentos de fluidos viscoplásticos sobre dutos de seção elípticaHermany, Lober January 2016 (has links)
O presente trabalho destina-se ao estudo numérico da geometria de tubos de seção elíptica que facilite a transferência de calor adimensional e diminua a queda de pressão adimensional (Δ̃) sofrida pelo escoamento. O método aplicado é o Design Construtal, que visa determinar a geometria que apresentará a menor resistência ao escoamento, ou seja, busca-se determinar a razão de aspecto da elipse (=⁄) que favorece a transferência de calor e diminui a queda de pressão do escoamento. O fluido empregado neste estudo apresenta características de viscoplasticidade. A relação entre a tensão cisalhante e a taxa de deformação obedece ao modelo de Herschel-Bulkley modificado. Considera-se que o escoamento é incompressível, laminar, bidimensional, externo e ocorre em regime permanente. A solução numérica do problema proposto é realizada com um código comercial baseado no método dos volumes finitos. É investigada a influência do índice de potência, , sobre a seção elíptica que facilita o escoamento e, para isso, este índice é variado de 0,4 a 1. A influência dos números de Reynolds (√), Herschel-Bulkley (√) e Prandtl (√) sobre o comportamento do escoamento também é avaliada. √ é variado de 1 a 40, √ é variado de 1 a 100 e √ é variado de 0,1 a 100 Os resultados mostram que, para um escoamento com √=1, √=1 e √=1, o aumento do índice de potência influencia negativamente na transferência de calor adimensional e a seção elíptica, que maximiza esta transferência de calor adimensional, tende a ser mais alongada na direção do escoamento. Já e influenciam positivamente na transferência de calor adimensional. Para um escoamento com √=1, √=1, =0,4 conclui-se que com o aumento de a razão de aspecto ótima (q,opt), do ponto de vista térmico, diminui. Quando é considerado um escoamento com √=1, √=1, =0,4 conclui-se que q,opt diminui com o aumento de , ou seja, a elipse torna-se mais alongada no sentido do escoamento. A variação de √ em um escoamento com √=1, √=1, =0,4 mostra que o aumento deste parâmetro acarreta em aumento da taxa de transferência adimensional e de Δ̃. / The present work is aimed at the numerical study of the geometry of elliptic section tubes that facilitates the dimensionless heat transfer and decreases the dimensionless pressure drop (Δ̃) suffered by the flow. The applied method is the Construtal Design, which aims to determine the geometry that will present the least resistance to the flow, that is, to determine the aspect ratio of the ellipse (=⁄) that favors heat transfer and decreases the flow pressure drop. The fluid used in this study has viscoplasticity characteristics. The relationship between shear stress and strain rate follows the modified Herschel-Bulkley model. It is considered that the flow is incompressible, laminar, two-dimensional, external and occurs in steady state. The numerical solution of the proposed problem is carried out with a commercial code based on the finite volume method. The influence of the power index, n, on the elliptical section facilitating the flow is investigated, and for this, the index is varied from 0.4 to 1. The influence of the Reynolds number (√), Herschel-Bulkley number (√) and Prandtl number (√) on the flow behavior is also evaluated √ is varied from 1 to 40, √ is varied from 1 to 100 and √ is varied from 0.1 to 100. The results show that for a flow with √=1, √=1 and √=1, the increase of the power index negatively influences the dimensionless heat transfer and the elliptic section, which maximizes this dimensionless heat transfer, tends to be more elongated in the direction of flow. Already √ and √ influence positively the dimensionless heat transfer. For a flow with √=1, √=1, =0.4 it is concluded that with the increase of √ the optimum aspect ratio (q,opt), from the thermal point of view, decreases. When a flow is considered with √=1, √=1, =0.4 it is concluded that q,opt decreases with the increase of √, that is, ellipse becomes more elongated in the flow direction. The variation of √ in a flow with √=1, √=1, =0.4 shows that the increase of this parameter causes an increase of the dimensionless transfer rate and Δ̃.
|
Page generated in 0.1134 seconds