• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 214
  • 31
  • 25
  • 20
  • 13
  • 12
  • 9
  • 8
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 399
  • 168
  • 94
  • 71
  • 70
  • 41
  • 40
  • 39
  • 35
  • 34
  • 32
  • 31
  • 31
  • 31
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

3D Modeling of Coupled Rock Deformation and Thermo-Poro-Mechanical Processes in Fractures

Rawal, Chakra 2012 May 1900 (has links)
Problems involving coupled thermo-poro-chemo-mechanical processes are of great importance in geothermal and petroleum reservoir systems. In particular, economic power production from enhanced geothermal systems, effective water-flooding of petroleum reservoirs, and stimulation of gas shale reservoirs are significantly influenced by coupled processes. During such procedures, stress state in the reservoir is changed due to variation in pore fluid pressure and temperature. This can cause deformation and failure of weak planes of the formation with creation of new fractures, which impacts reservoir response. Incorporation of geomechanical factor into engineering analyses using fully coupled geomechanics-reservoir flow modeling exhibits computational challenges and numerical difficulties. In this study, we develop and apply efficient numerical models to solve 3D injection/extraction geomechanics problems formulated within the framework of thermo-poro-mechanical theory with reactive flow. The models rely on combining Displacement Discontinuity (DD) Boundary Element Method (BEM) and Finite Element Method (FEM) to solve the governing equations of thermo-poro-mechanical processes involving fracture/reservoir matrix. The integration of BEM and FEM is accomplished through direct and iterative procedures. In each case, the numerical algorithms are tested against a series of analytical solutions. 3D study of fluid injection and extraction into the geothermal reservoir illustrates that thermo-poro-mechanical processes change fracture aperture (fracture conductivity) significantly and influence the fluid flow. Simulations that consider joint stiffness heterogeneity show development of non-uniform flow paths within the crack. Undersaturated fluid injection causes large silica mass dissolution and increases fracture aperture while supersaturated fluid causes mineral precipitation and closes fracture aperture. Results show that for common reservoir and injection conditions, the impact of fully developed thermoelastic effect on fracture aperture tend to be greater compare to that of poroelastic effect. Poroelastic study of hydraulic fracturing demonstrates that large pore pressure increase especially during multiple hydraulic fracture creation causes effective tensile stress at the fracture surface and shear failure around the main fracture. Finally, a hybrid BEFEM model is developed to analyze stress redistribution in the overburden and within the reservoir during fluid injection and production. Numerical results show that fluid injection leads to reservoir dilation and induces vertical deformation, particularly near the injection well. However, fluid withdrawal causes reservoir to compact. The Mandel-Cryer effect is also successfully captured in numerical simulations, i.e., pore pressure increase/decrease is non-monotonic with a short time values that are above/below the background pore pressure.
162

Jules Verne or Joint Venture? Investigation of a Novel Concept for Deep Geothermal Energy Extraction

Wachtmeister, Henrik January 2012 (has links)
Geothermal energy is an energy source with potential to supply mankind with both heat and electricity in nearly unlimited amounts. Despite this potential geothermal energy is not often considered in the general energy debate, often due to the perception that it is a margin energy source bound to a few locations with favorable geological conditions. Today, new technology and system concepts are under development with the potential to extract geothermal energy almost anywhere at commercial rates. The goal of these new technologies is the same, to harness the heat stored in the crystalline bedrock available all over the world at sufficient depth. To achieve this goal two major problems need to be solved: (1) access to the depths where the heat resource is located and (2) creation of heat transferring surfaces and fluid circulation paths for energy extraction. In this thesis a novel concept and method for both access and extraction of geothermal energy is investigated. The concept investigated is based on the earlier suggested idea of using a main access shaft instead of conventional surface drilling to access the geothermal resource, and the idea of using mechanically constructed 'artificial fractures' instead of the commonly used hydraulic fracturing process for creation of heat extraction systems. In this thesis a specific method for construction of such suggested mechanically constructed heat transfer surfaces is investigated. The method investigated is the use of diamond wire cutting technology, commonly used in stone quarries. To examine the concept two heat transfer models were created to represent the energy extraction system: an analytical model based on previous research and a numerical model developed in a finite element analysis software. The models were used to assess the energy production potential of the extraction system. To assess the construction cost two cost models were developed to represent the mechanical construction method. By comparison of the energy production potential results from the heat transfer models with the cost results from the construction models a basic assessment of the heat extraction system was made. The calculations presented in this thesis indicate that basic conditions for economic feasibility could exist for the investigated heat extraction system.
163

Metal-rich Scales in the Reykjanes Geothermal System, SW Iceland: Sulfide Minerals in a Seawater-dominated Hydrothermal Environment

Hardardóttir, Vigdís 03 May 2011 (has links)
Downhole sampling of unboiled liquid at 1350 and 1500 m depth in the seawater-dominated Reykjanes high-temperature geothermal system in Iceland shows that metal concentrations measured at surface are minimum values due to mineral precipitation in the wells; by analogy of similar tectonic setting, host rocks and fluid composition, the metal concentrations measured in many black smoker vents at the seafloor are also minima. Fluids in the Reykjanes geothermal system react with mid-ocean ridge basalt at temperatures as high as 346°C and contain Fe 9-140 ppm, Cu 14-17 ppm, Zn 5-27 ppm, Pb 120-290 ppb, 1-6 ppb Au, and 28-107 ppb Ag. Fluids discharged at surface from the same wells have orders of magnitude lower metal concentrations due to precipitation caused by boiling and vapor loss during depressurization. Upstream of the orifice plate at high pressure (40 bar, 252°C) the precipitates consist mainly of sphalerite and chalcopyrite with a trace of galena and bornite. At the orifice plate of old wells, the pressure decreased sharply to 11 bar (188°C), resulting in abundant deposition of amorphous silica together with minor sphalerite and traces of chalcopyrite. In new wells the pressure at the orifice plate decreases to 22 bar (220°C); this pressure decrease and concomitant boiling causes deposition of fine-grained bornite-digenite solid solution together with sphalerite and galena on the fluid flow control valve. In high-pressure wells (average wellhead pressure 45-35 bar) most metals (mainly as sphalerite) are deposited downstream of the orifice plate, with up to 950 ppm Au and 2.5 wt.% Ag. Bulk concentrations in the scales vary between 15-60 wt.% upstream and downstream of the orifice plate and diminish from there. Iron increases up well from 8 to ~20 wt.% and decreases downstream of the orifice plate from 6 to 2 wt.% at the separation station; Cu downhole is ~3 wt.% but increases to 25 wt.% on the fluid flow control valve and then decreases; Pb downhole 100s ppm but at the wellhead is ~3 wt.%, increasing to 15 wt.% at the fluid flow control valve, then decreasing sharply from there.
164

Enhancing geothermal heat pump systems with parametric performance analyses

Self, Stuart 01 April 2010 (has links)
Parametric performance analyses and comparison of a basic geothermal heat pump, a heat pump cycle with motor cooling/refrigerant preheating, and a heat pump cycle utilizing an economizer with respect to first law is conducted through simulation. Changing compressor, pump, and motor efficiency, along with condenser pressure, evaporator pressure, degree of subcooling at the condenser exit and degree of superheating at the evaporator exit is investigated. Economizer arrangements yield the highest coefficient of performance and resilience to change in COP with variation in evaporator pressure, and degree of superheating and subcooling. The basic vapor compression and motor cooling/refrigerant preheating systems have the lowest COP throughout and greatest resilience to variation in compressor efficiency, motor efficiency and condenser pressure. Motor cooling/refrigerant preheating and economizers have advantages over basic vapor compression cycles. Motor cooling reduces ground loop heat exchanger length with similar COP, and economizers allow for an increase in COP compared to the basic cycle. / UOIT
165

Mikroorganismen in geothermischen Aquiferen : Einfluss mikrobieller Prozesse auf den Anlagenbetrieb / Microorganisms in geothermal plants : influence of microbial processes on plant operation

Lerm, Stephanie January 2012 (has links)
In Fluid-, Filter- und Sedimentproben von vier geothermischen Anlagen des Norddeutschen Beckens wurden mit molekulargenetischen Verfahren unterschiedliche mikrobielle Gemeinschaften nachgewiesen. Die mikrobielle Zusammensetzung in den Prozesswässern wurde dabei durch die Aquiferteufe, die Salinität, die Temperatur und den verfügbaren Elektronendonatoren und -akzeptoren beeinflusst. Die in den anoxischen Prozesswässern identifizierten Organismen zeichneten sich durch einen chemoheterotrophen oder chemoautotrophen Stoffwechsel aus, wobei Nitrat, Sulfat, Eisen (III) oder Bikarbonat als terminale Elektronenakzeptoren fungierten. Mikroorganismen beeinflussten den Betrieb von zwei Anlagen negativ. So reduzierten im Prozesswasser des Kältespeichers am Berliner Reichstag vorhandene Eisenoxidierer, nahe verwandt zu der Gattung Gallionella, die Injektivität der Bohrungen durch Eisenhydroxidausfällungen in den Filterschlitzen. Biofilme, die von schwefeloxidierenden Bakterien der Gattung Thiothrix in den Filtern der obertägigen Anlage gebildet wurden, führten ebenfalls zu Betriebsstörungen, indem sie die Injektion des Fluids in den Aquifer behinderten. Beim Wärmespeicher in Neubrandenburg waren Sulfatreduzierer vermutlich an der Bildung von Eisensulfidausfällungen in den obertägigen Filtern und im bohrlochnahen Bereich beteiligt und verstärkten Korrosionsprozesse an der Pumpe im Bohrloch der kalten Aquiferseite. Organische Säuren in den Fluiden sowie mineralische Ausfällungen in den Filtern der obertägigen Anlagen waren Belege für die Aktivität der in den verschiedenen Anlagen vorhandenen Mikroorganismen. Es wurde zudem deutlich, dass Mikroorganismen auf Grund der hohen Durchflussraten in den Anlagen chemische Veränderungen in den Prozesswässern deutlich sensitiver anzeigen als chemische Analyseverfahren. So deuteten Änderungen in der Zusammensetzung der mikrobiellen Biozönosen und speziell die Identifikation von Indikatororganismen wie Eisen- und Schwefeloxidierern, fermentativen Bakterien und Sulfatreduzierern auf eine erhöhte Verfügbarkeit von Elektronendonatoren oder akzeptoren in den Prozesswässern hin. Die Ursachen für die an den Geothermieanlagen auftretenden Betriebsstörungen konnten dadurch erkannt werden. / Distinct microbial communities were found in fluid, filter, and sediment samples taken from four geothermal plants in the North German Basin by using molecular genetic techniques. The microbial composition in process fluids was influenced by aquifer depth, salinity, temperature, and available electron donors and acceptors. The organisms identified in the anoxic process fluids were closely related to chemoheterotrophs and chemoautotrophs that use nitrate, sulfate, ferric iron, and bicarbonate as the terminal electron acceptor. Microorganisms adversely affected operation of two geothermal plants. For example, Gallionella-related iron oxidizing bacteria, abundant in process fluids of the cold store at the Berliner Reichstag caused operation failures due to the formation of iron hydroxide scale that clogged the filter slots in the wells and led to a reduction of injectivity. In addition, biofilms formed by sulfur oxidizing Thiothrix sp. in filters of the topside facility drastically reduced injectivity. At the heat store in Neubrandenburg, sulfate reducing bacteria were probably involved in the formation of iron sulfides in filters of the topside facility and in the near wellbore area, and may have increased corrosion processes on the well pump at the cold side of the aquifer. Volatile fatty acids in process fluids and mineral scales in filters of the topside facility indicated the activity of microorganisms present in the different geothermal plants. In addition, it was shown that microorganisms react more sensitive than chemical analyses because of the high fluid flow in the plants, and thus indicate chemical changes in process fluids. Changes in the microbial community composition, and particularly the identification of indicator organisms, such as iron and sulfur oxidizer, fermentative, and sulfate reducing bacteria were suitable for the detection of increased availability of electron donors and acceptors. Thus, reasons for operation failures occurring at geothermal plants could be identified.
166

Informing the practice of ground heat exchanger design through numerical simulations

Haslam, Simon R. January 2013 (has links)
Closed-loop ground source heat pumps (GSHPs) are used to transfer thermal energy between the subsurface and conditioned spaces for heating and cooling applications. A basic GSHP is composed of a ground heat exchanger (GHX), which is a closed loop of pipe buried in the shallow subsurface circulating a heat exchange fluid, connected to a heat pump. These systems offer an energy efficient alternative to conventional heating and cooling systems; however, installation costs are higher due to the additional cost associated with the GHX. By further developing our understanding of how these ground loops interact with the subsurface, it may possible to design them more intelligently, efficiently, and economically. To gain insight into the physical processes occurring between the GHX and the subsurface and to identify efficiencies and inefficiencies in GSHP design and operation, two main research goals were defined: comprehensive monitoring of a fully functioning GSHP and intensive simulation of these systems using computer models. A 6-ton GSHP was installed at a residence in Elora, ON. An array of 64 temperature sensors was installed on and surrounding the GHX and power consumption and temperature sensors were installed on the system inside the residence. The data collected were used to help characterize and understand the function of the system, provide motivation for further investigations, and assess the impact of the time of use billing scheme on GSHP operation costs. To simulate GSHPs, two computer models were utilized. A 3D finite element model was employed to analyse the effects of pipe configuration and pipe spacing on system performance. A unique, transient 1D finite difference heat conduction model was developed to simulate a single pipe in a U-tube shape with inter-pipe interactions and was benchmarked against a tested analytical solution. The model was used to compare quasi-steady state and transient simulation of GSHPs, identify system performance efficiencies through pump schedule optimization, and investigate the effect of pipe length on system performance. A comprehensive comparison of steady state and pulsed simulation concludes that it is possible to simulate transient operation using a steady state assumption for some cases. Optimal pipe configurations are identified for a range of soil thermal properties. Optimized pump schedules are identified and analysed for a specific heat pump and fluid circulation pump. Finally, the effect of pipe spacing and length on system performance is characterized. It was found that there are few design inefficiencies that could be easily addressed to improve general design practice.
167

Metal-rich Scales in the Reykjanes Geothermal System, SW Iceland: Sulfide Minerals in a Seawater-dominated Hydrothermal Environment

Hardardóttir, Vigdís 03 May 2011 (has links)
Downhole sampling of unboiled liquid at 1350 and 1500 m depth in the seawater-dominated Reykjanes high-temperature geothermal system in Iceland shows that metal concentrations measured at surface are minimum values due to mineral precipitation in the wells; by analogy of similar tectonic setting, host rocks and fluid composition, the metal concentrations measured in many black smoker vents at the seafloor are also minima. Fluids in the Reykjanes geothermal system react with mid-ocean ridge basalt at temperatures as high as 346°C and contain Fe 9-140 ppm, Cu 14-17 ppm, Zn 5-27 ppm, Pb 120-290 ppb, 1-6 ppb Au, and 28-107 ppb Ag. Fluids discharged at surface from the same wells have orders of magnitude lower metal concentrations due to precipitation caused by boiling and vapor loss during depressurization. Upstream of the orifice plate at high pressure (40 bar, 252°C) the precipitates consist mainly of sphalerite and chalcopyrite with a trace of galena and bornite. At the orifice plate of old wells, the pressure decreased sharply to 11 bar (188°C), resulting in abundant deposition of amorphous silica together with minor sphalerite and traces of chalcopyrite. In new wells the pressure at the orifice plate decreases to 22 bar (220°C); this pressure decrease and concomitant boiling causes deposition of fine-grained bornite-digenite solid solution together with sphalerite and galena on the fluid flow control valve. In high-pressure wells (average wellhead pressure 45-35 bar) most metals (mainly as sphalerite) are deposited downstream of the orifice plate, with up to 950 ppm Au and 2.5 wt.% Ag. Bulk concentrations in the scales vary between 15-60 wt.% upstream and downstream of the orifice plate and diminish from there. Iron increases up well from 8 to ~20 wt.% and decreases downstream of the orifice plate from 6 to 2 wt.% at the separation station; Cu downhole is ~3 wt.% but increases to 25 wt.% on the fluid flow control valve and then decreases; Pb downhole 100s ppm but at the wellhead is ~3 wt.%, increasing to 15 wt.% at the fluid flow control valve, then decreasing sharply from there.
168

The effects of soil heterogeneity on the performance of horizontal ground loop heat exchangers

Simms, Richard Blake January 2013 (has links)
Horizontal ground loop heat exchangers (GLHE) are widely used in many countries around the world as a heat source/sink for building conditioning systems. In Canada, these systems are most common in residential buildings that do not have access to the natural gas grid or in commercial structures where the heating and cooling loads are well balanced. These horizontal systems are often preferred over vertical systems because of the expense of drilling boreholes for the vertical systems. Current practice when sizing GLHEs is to add a considerable margin of safety. A margin of safety is required because of our poor understanding of in situ GLHE performance. One aspect of this uncertianty is in how these systems interact with heterogeneous soils. To investigate the impact of soil thermal property heterogeneity on GLHE performance, a specialized finite element model was created. This code avoided some of the common, non-physical assumptions made by many horizontal GLHE models by including a representation of the complete geometry of the soil continuum and pipe network. This model was evaluated against a 400 day observation period at a field site in Elora, Ontario and its estimates were found to be capable of reaching a reasonable agreement with observations. Simulations were performed on various heterogeneous conductivity fields created with GSLIB to evaluate the impact of structural heterogeneity. Through a rigorous set of experiments, heterogeneity was found to have little effect on the overall performance of horizontal ground loops over a wide range of soil types and system configurations. Other variables, such as uncertainty of the mean soil thermal conductivity, were shown to have much more impact on the uncertainty of performance than heterogeneity. The negative impact of heterogeneity was shown to be further minimized by: maintaining a 50 cm spacing between pipes in trenches; favouring multiple trenches over a single, extremely long trench; and/or using trenches greater than 1 m deep to avoid surface effects.
169

Studie av skyddsavstånd mellan bergvärmeanläggning och skyddsobjekt i ett vattenskyddsområde

Wikström, Maria January 2005 (has links)
During installation and operation of a geothermal heat pump system leakage of an antifreezing agent can appear in a borehole and leak out in surrounding groundwater. To guarantee high quality drinking water for generations to come Sweden has dedicated some areas as water protection areas. The local authority gives permits for the installation of heat pump systems within water protection areas. Before giving a permit the local authority makes an evaluation of the risks involved in installation and operation of the system within the area. By keeping a certain distance between the protected object in the area and the heat pump system the risk of polluting the protected object with an anti-freezing agent can be reduced. This thesis makes a comparison between three different methods of calculating an appropriate distance between the protected object and the heat pump system. These methods include different numbers of parameters to calculate the appropriate distance. The results are evaluated with regard to the parameters used. The methods used are a simplified version of an empirical point-count system made by LeGrand, an analytical solution from Baetsle and a numerical solution with Visual MODFLOW 4.0. / Miljöbalken med bakomliggande miljömål skall bidra till att skydda viktiga naturområden för en hållbar utveckling. Ett stort problem för att tillgodose detta behov är dock alla konkurrerande intressen som kan finnas inom ett och samma område. Vattenskyddsområden utfärdas i syfte att ge tillgång till rent vatten för framtida dricksvatten, men konkurrerande intressen påverkar även dessa områden. Beslut om vilka verksamheter som skall vara tillåtna inom ett vattenskyddsområde tas av den kommun inom vilken området finns. Ett ökande oljepris har under senare år lett till ett ökat intresse av att installera bergvärmeanläggningar. Denna kraftiga ökning har gjort att negativa effekter av att installera dessa anläggningar förbisetts och att installatörer med dåliga kunskaper fått en chans att etablera sig på marknaden. Före eventuell installation av en bergvärmeanläggning inom ett vattenskyddsområde är det viktigt att beakta de risker som en bergvärmeanläggning kan medföra för omgivande grundvatten. En noggrann utredning kräver beaktande av alla de riskmoment som installation och drift av en sådan anläggning kan medföra. För omgivande grundvatten är det dock främst läckage av köldbärarvätska, dvs. vatten med tillfört frostskyddsmedel, som kan ha en större inverkan. Det finns idag ingen övergripande lagstiftning över tillåtna köldbärarvätskor, men enligt de hänsynsregler som finns i miljöbalken och rekommendationer av bl.a. Sveriges Geologiska Undersökning skall etanol användas som frostskyddsmedel. Etanol för tekniskt bruk innehåller denatureringsmedel för att motverka konsumtion. Denatureringsmedel samt etanol kan ge smak och lukt till vatten och är därför inte önskvärda att ha i ett vattenskyddsområde. Dessa ämnen tillför även negativa effekter genom att de som substrat för bakterier kan ge en ökad bakteriehalt i marken. Under nedbrytning av dessa ämnen kan även syrefria förhållanden utbildas i jorden vilket kan leda till utfällningar av järn och mangan samt utbildning av svavelväte. Det finns olika riktlinjer för hur risk med att införa en bergvärmeanläggning i ett vattenskyddsområde beaktas i olika kommuner. Ett lämpligt skyddsavstånd mellan en bergvärmeanläggning och ett skyddsobjekt kan dock göra att risken för att förorena ett skyddsobjekt med etanol kan minimeras. Detta arbete har utförts i syfte att jämföra olika metoder för att ta fram ett skyddsavstånd för en första övergripande undersökning av vilken effekt ett läckage av etanol kan ha på ett skyddsobjekt ett visst avstånd från en ansatt bergvärmeanläggning. De metoder som använts är en förenklad form av en empirisk lösning av LeGrand, en analytisk lösning av Baetsle och en numerisk lösning i Visual MODFLOW.
170

Detection of Gas Hydrates in Garden Banks and Keathley Canyon from Seismic Data

Murad, Idris 2009 May 1900 (has links)
Gas hydrate is a potential energy source that has recently been the subject of much academic and industrial research. The search for deep-water gas hydrate involves many challenges that are especially apparent in the northwestern Gulf of Mexico, where the sub-seafloor is a complex structure of shallow salt diapirs and sheets underlying heavily deformed shallow sediments and surrounding diverse minibasins. Here, we consider the effect these structural factors have on gas hydrate occurrence in Garden Banks and Keathley Canyon blocks of the Gulf of Mexico. This was accomplished by first mapping the salt and shallow deformation structures throughout the region using a 2D grid of seismic reflection data. In addition, major deep-rooted faults and shallow-rooted faults were mapped throughout the area. A shallow sediment deformation map was generated that defined areas of significant faulting. We then quantified the thermal impact of shallow salt to better estimate the gas hydrate stability zone (GHSZ) thickness. The predicted base of the GHSZ was compared to the seismic data, which showed evidence for bottom simulating reflectors and gas chimneys. These BSRs and gas chimneys were used to ground-truth the calculated depth of the base of GHSZ. Finally, the calculated GHSZ thickness was used to estimate the volume of the gas hydrate reservoir in the area after determining the most reasonable gas hydrate concentrations in sediments within the GHSZ. An estimate of 5.5 trillion cubic meters of pure hydrate methane in Garden Banks and Keathley Canyon was obtained.

Page generated in 0.0572 seconds